

Giải mục 2 trang 49 SGK Toán 11 tập 1 - Kết nối tri thức>
Cho cấp số cộng (left( {{u_n}} right)) với số hạng đầu ({u_1}) và công sai d a) Tính các số hạng ({u_2},{u_3},{u_4},{u_5}) theo ({u_1}) và d b) Dự đoán công thức tính số hạng tổng quát ({u_n}) theo ({u_1}) và d
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
HĐ2
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 2 trang 49 SGK Toán 11 Kết nối tri thức
Cho cấp số cộng \(\left( {{u_n}} \right)\) với số hạng đầu \({u_1}\) và công sai d.
a) Tính các số hạng \({u_2},{u_3},{u_4},{u_5}\) theo \({u_1}\) và d.
b) Dự đoán công thức tính số hạng tổng quát \({u_n}\) theo \({u_1}\) và d.
Phương pháp giải:
Cấp số cộng là một dãy số (hữu hạn hay vô hạn), trong đó kể từ số hạng thứ hai, mỗi số hạng đều bằng số hạng đứng ngay trước nó cộng với một số không đổi d.
Lời giải chi tiết:
a) Ta có: \({u_2} = {u_1} + d\);
\({u_3} = {u_2} + d = {u_1} + 2d\);
\({u_4} = {u_3} + d = {u_1} + 3d\);
\({u_5} = {u_4} + d = {u_1} + 4d\).
b) Công thức tính số hạng tổng quát \({u_n}\):
\({u_n} = {u_1} + \left( {n - 1} \right)d\).
LT2
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 2 trang 49 SGK Toán 11 Kết nối tri thức
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 4n - 3\). Chứng minh rằng \(\left( {{u_n}} \right)\) là một cấp số cộng. Xác định số hạng đầu \({u_1}\) và công sai d của cấp số cộng này. Từ đó viết số hạng tổng quát \({u_n}\) dưới dạng \({u_n} = {u_1} + \left( {n - 1} \right)d\).
Phương pháp giải:
Cấp số cộng là một dãy số (hữu hạn hay vô hạn), trong đó kể từ số hạng thứ hai, mỗi số hạng đều bằng số hạng đứng ngay trước nó cộng với một số không đổi d.
Để chứng minh \(\left( {{u_n}} \right)\) là một cấp số cộng, hãy chứng minh hiệu hai số hạng liên tiếp \({u_n} - {u_{n - 1}}\) không đổi.
Lời giải chi tiết:
\({u_n} - {u_{n - 1}} = \left( {4n - 3} \right) - \left[ {4\left( {n - 1} \right) - 3} \right] = 4,\;\forall n \ge 2\).
Vậy \(\left( {{u_n}} \right)\) là một cấp số cộng với số hạng đầu \({u_1} = 1\) và công sai \(d = 4\).
Số hạng tổng quát \({u_n} = 1 + 4\left( {n - 1} \right)\).


- Giải mục 3 trang 50 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 2.8 trang 51 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 2.9 trang 51 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 2.10 trang 51 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 2.11 trang 51 SGK Toán 11 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Giải câu hỏi mở đầu trang 119 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 111 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 95 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 88 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 84 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 119 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 111 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 95 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 88 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 84 SGK Toán 11 tập 1 - Kết nối tri thức