Bài 2.10 trang 51 SGK Toán 11 tập 1 - Kết nối tri thức>
Một cấp số cộng có số hạng thứ 5 bằng 18 và số hạng thứ 12 bằng 32. Tìm số hạng thứ 50 của cấp số cộng này.
Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Một cấp số cộng có số hạng thứ 5 bằng 18 và số hạng thứ 12 bằng 32. Tìm số hạng thứ 50 của cấp số cộng này.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Sử dụng công thức số hạng tổng quát \({u_n} = {u_1} + \left( {n - 1} \right)d\).
Giải hệ phương trình để tính \({u_1}\) và d.
Lời giải chi tiết
Số hạng tổng quát của cấp số cộng: \({u_n} = {u_1} + \left( {n - 1} \right)d\).
Ta có:
\(\left\{ \begin{array}{l}{u_5} = {u_1} + 4d = 18\\{u_{12}} = {u_1} + 11d = 32\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 10\\d = 2\end{array} \right.\)
\( \Rightarrow {u_n} = 10 + 2\left( {n - 1} \right) = 2n + 8\).
Số hạng thứ 50: \({u_{50}} = 2.50 + 8 = 108\).
- Bài 2.11 trang 51 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 2.12 trang 51 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 2.13 trang 51 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 2.14 trang 51 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 2.9 trang 51 SGK Toán 11 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức