Bài 2.11 trang 51 SGK Toán 11 tập 1 - Kết nối tri thức


Một cấp số cộng cố số hạng đầu bằng 5 và công sai bằng 2. Hỏi phải lấy tổng của bao nhiêu số hạng đầu của cấp số cộng này để có tổng bằng 2700?

Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Một cấp số cộng cố số hạng đầu bằng 5 và công sai bằng 2. Hỏi phải lấy tổng của bao nhiêu số hạng đầu của cấp số cộng này để có tổng bằng 2700?

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Gọi n là số các số hạng đầu tiên trong cấp số cộng.

Dựa vào công thức tính tổng các số hạng trong cấp số cộng: \({S_n} = \frac{n}{2}\left[ {2{u_n} + \left( {n - 1} \right)d} \right]\) đế tính n.

Lời giải chi tiết

Ta có: \({S_n} = \frac{n}{2}\left[ {2 \times 5 + \left( {n - 1} \right) \times 2} \right] = 2700\;\)

 \( \Leftrightarrow \frac{n}{2}\left( {8 + 2n} \right) = 2700\;\)

\( \Leftrightarrow {n^2} + 4n - 2700 = 0\;\)

\( \Leftrightarrow \left[ \begin{array}{l}n =  - 54(L)\\n = 50(TM)\end{array} \right.\)

Vậy phải lấy tổng 50 số hạng đầu 


Bình chọn:
4.2 trên 13 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí