Bài 2.14 trang 51 SGK Toán 11 tập 1 - Kết nối tri thức>
Vào năm 2020, dân số của một thành phố là khoảng 1,2 triệu người. Giả sử mỗi năm, dân số của thành phố này tăng thêm khoảng 30 nghìn người. Hãy ước tính dân số của thành phố này vào năm 2030.
Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Vào năm 2020, dân số của một thành phố là khoảng 1,2 triệu người. Giả sử mỗi năm, dân số của thành phố này tăng thêm khoảng 30 nghìn người. Hãy ước tính dân số của thành phố này vào năm 2030.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Xác định được \({u_1}\) và công sai d.
Suy ra công thức số hạng tổng quát \({u_n}\).
Lời giải chi tiết
Đổi 1,2 triệu người = 1200 nghìn người.
Ta có: \({u_1} = 1200,\;d = 30\).
Dân số sau n năm là: \({u_n} = 1200 + 30\left( {n - 1} \right)\)
Vậy dân số của năm 2030 tức \(n = 1\) là: \({u_{11}} = 1200 + 30\left( {11 - 1} \right) = 1500\) (nghìn người) = 1,5 triệu người.
- Bài 2.13 trang 51 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 2.12 trang 51 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 2.11 trang 51 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 2.10 trang 51 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 2.9 trang 51 SGK Toán 11 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức