Lý thuyết Giải bất phương trình bậc hai một ẩn - SGK Toán 10 Chân trời sáng tạo>
Bất phương trình bậc hai một ẩn x là bất phương trình có một trong các dạng
Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
A. Lý thuyết
Bất phương trình bậc hai một ẩn x là bất phương trình có một trong các dạng \(a{x^2} + bx + c > 0\), \(a{x^2} + bx + c \ge 0\), \(a{x^2} + bx + c < 0\), \(a{x^2} + bx + c \le 0\) với \(a \ne 0\). Nghiệm của bất phương trình bậc hai là các giá trị của biến x mà khi thay vào bất phương trình thì ta được bất đẳng thức đúng. |
Giải một bất phương trình bậc hai là tìm tập nghiệm của nó. |
Ta có thể giải bất phương trình bậc hai bằng cách xét dấu tam thức bậc hai tương ứng.
B. Bài tập
Bài 1: Các bất phương trình nào sau đây là bất phương trình bậc hai một ẩn? Nếu là bất phương trình bậc hai một ẩn, x = 1 và x = 2 có là nghiệm của bất phương trình đó hay không?
a) \({x^2} + x - 3 \ge 0\).
b) \(3{x^3} + {x^2} - 1 \le 0\).
Giải:
a) \({x^2} + x - 3 \ge 0\) là một bất phương trình bậc hai một ẩn.
Vì \({1^2} + 1 - 3 = - 1 < 0\) nên x = 1 không là nghiệm của bất phương trình trên.
Vì \({2^2} + 2 - 3 = 3 > 0\) nên x = 2 là một nghiệm của bất phương trình trên.
b) \(3{x^3} + {x^2} - 1 \le 0\) không phải là một bất phương trình bậc hai một ẩn.
Bài 2: Giải các bất phương trình sau:
a) \(3{x^2} + x + 5 \le 0\).
b) \( - 3{x^2} + 2\sqrt 3 x - 1 \ge 0\).
c) \( - {x^2} + 2x + 1 > 0\).
Giải:
a) Tam thức \(f(x) = 3{x^2} + x + 5\) có \(\Delta = - 59 < 0\), hệ số a = 3 > 0 0 nên f(x) luôn dương (cùng dấu với a) với mọi x, tức là \(3{x^2} + x + 5 > 0\) với mọi \(x \in \mathbb{R}\). Suy ra bất phương trình vô nghiệm.
b) Tam thức \(f(x) = - 3{x^2} + 2\sqrt 3 x - 1\) có \(\Delta ' = 0\), hệ số a = -3 < 0 nên f(x) có nghiệm kép \(x = \frac{{\sqrt 3 }}{3}\) và f(x) luôn âm (cùng dấu với a) với mọi \(x \ne \frac{{\sqrt 3 }}{3}\), tức là \( - 3{x^2} + 2\sqrt 3 x - 1 < 0\) với mọi \(x \ne \frac{{\sqrt 3 }}{3}\).
Suy ra bất phương trình có nghiệm duy nhất \(x = \frac{{\sqrt 3 }}{3}\).
c) Tam thức \(f(x) = - {x^2} + 2x + 1\) có \(\Delta ' = 2 > 0\) nên f(x) có hai nghiệm \({x_1} = 1 - \sqrt 2 \) và \({x_2} = 1 + \sqrt 2 \).
Mặt khác, a = -1 < 0, do đó ta có bảng xét dấu sau:
Tập nghiệm của bất phương trình là \(S = \left( {1 - \sqrt 2 ;1 + \sqrt 2 } \right)\).
- Giải mục 1 trang 11, 12 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải bài 1 trang 12 SGK Toán 10 tập 2 – Chân trời sáng tạo
- Giải bài 2 trang 13 SGK Toán 10 tập 2 – Chân trời sáng tạo
- Giải bài 3 trang 13 SGK Toán 10 tập 2 – Chân trời sáng tạo
- Giải bài 4 trang 13 SGK Toán 10 tập 2 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Nhị thức Newton - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Quy tắc cộng và quy tắc nhân - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Phương trình quy về phương trình bậc hai - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Giải bất phương trình bậc hai một ẩn - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Nhị thức Newton - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Quy tắc cộng và quy tắc nhân - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Phương trình quy về phương trình bậc hai - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Giải bất phương trình bậc hai một ẩn - SGK Toán 10 Chân trời sáng tạo