Toán 10, giải toán lớp 10 kết nối tri thức với cuộc sống
Bài 21. Đường tròn trong mặt phẳng tọa độ Toán 10 Kết n..
Lý thuyết Đường tròn trong mặt phẳng tọa độ - SGK Toán 10 Kết nối tri thức>
A. Lý thuyết 1. Phương trình đường tròn Đường tròn tâm I, bán kính R là tập hợp những điểm M thỏa mãn điều kiện IM = R. Do đó, để lập phương trình đường tròn, ta cần chuyển điều kiện hình học IM = R thành một điều kiện đại số.
Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
A. Lý thuyết
1. Phương trình đường tròn
Đường tròn tâm I, bán kính R là tập hợp những điểm M thỏa mãn điều kiện IM = R. Do đó, để lập phương trình đường tròn, ta cần chuyển điều kiện hình học IM = R thành một điều kiện đại số.

|
Điểm M(x;y) thuộc đường tròn (C), tâm I(a;b), bán kính R khi và chỉ khi \({(x - a)^2} + {(y - b)^2} = {R^2}\). Phương trình trên là phương trình đường tròn (C). |
Nhận xét: Phương trình \({x^2} + {y^2} - 2ax - 2by + c = 0\) là phương trình của một đường tròn (C) khi và chỉ khi \({a^2} + {b^2} - c > 0\). Khi đó, (C) có tâm I(a;b) và bán kính \(R = \sqrt {{a^2} + {b^2} - c} \).
2. Phương trình tiếp tuyến của đường tròn
|
Cho điểm \(M({x_0};{y_0})\) thuộc đường tròn (C): \({(x - a)^2} + {(y - b)^2} = {R^2}\) (tâm I(a;b), bán kính R). Khi đó, tiếp tuyến \(\Delta \) của (C) tại \(M({x_0};{y_0})\) có vecto pháp tuyến \(\overrightarrow {MI} = (a - {x_0};b - {y_0})\) và phương trình \((a - {x_0})(x - {x_0}) + (b - {y_0})(y - {y_0}) = 0\). |
B. Bài tập
Bài 1:
a) Tìm tâm và bán kính đường tròn (C) có phương trình: \({(x - 2)^2} + {(y + 3)^2} = 16\).
b) Viết phương trình đường tròn (C’) tâm J(2;-1) và có bán kính gấp đôi bán kính đường tròn (C).
Giải:
a) Ta viết phương trình của (C) ở dạng \({(x - 2)^2} + {(y - ( - 3))^2} = {4^2}\).
Vậy (C) có tâm I(2;-3) và bán kính R = 4.
b) Đường tròn (C’) có tâm J(2;-1) và bán kính R’ = 2R = 8 nên có phương trình:
\({(x - 2)^2} + {(y + 1)^2} = 64\).
Bài 2: Phương trình \({x^2} + {y^2} - 4x + 2y - 4 = 0\) có phải là phương trình đường tròn không? Nếu có, xác định tọa độ tâm và bán kính của đường tròn đó.
Giải:
Từ phương trình, ta có \(a = \frac{{ - 4}}{{ - 2}} = 2\); \(b = \frac{2}{{ - 2}} = - 1\); c = -4.
Suy ra \({a^2} + {b^2} - c = {2^2} + {( - 1)^2} - ( - 4) = 9 > 0\).
Vậy phương trình \({x^2} + {y^2} - 4x + 2y - 4 = 0\) là phương trình đường tròn tâm I(2;-1) và bán kính \(R = \sqrt 9 = 3\).
Bài 3: Lập phương trình đường tròn đi qua ba điểm A(-1;1), B(0;-2), C(0;2).
Giải:
Giả sử tâm của đường tròn là điểm I(a;b). Ta có \(IA = IB = IC \Leftrightarrow I{A^2} = I{B^2} = I{C^2}\).
Khi đó:
\(\left\{ \begin{array}{l}{( - 1 - a)^2} + {(1 - b)^2} = {(0 - a)^2} + {( - 2 - b)^2}\\{(0 - a)^2} + {( - 2 - b)^2} = {(0 - a)^2} + {(2 - b)^2}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{a^2} + {b^2} + 2a - 2b + 2 = {a^2} + {b^2} + 4b + 4\\{a^2} + {b^2} + 4b + 4 = {a^2} + {b^2} - 4b + 4\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}2a - 2b = 4b + 2\\b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 0\end{array} \right.\).
Đường tròn tâm I(1;0) bán kính \(R = IC = \sqrt {{a^2} + {b^2} - 4b + 4} = \sqrt 5 \).
Phương trình đường tròn là \({(x - 1)^2} + {(y - 0)^2} = {(\sqrt 5 )^2}\).
Vậy phương trình đường tròn là \({(x - 1)^2} + {y^2} = 5\).
Bài 4: Cho đường tròn (C) có phương trình \({(x + 1)^2} + {(y - 3)^2} = 5\). Điểm M(0;1) có thuộc đường tròn (C) hay không? Nếu có, hãy viết phương trình tiếp tuyến tại M của (C).
Giải:
Do \({(0 + 1)^2} + {(1 - 3)^2} = 5\), nên điểm M thuộc (C).
Đường tròn (C) có tâm là I(-1;3). Tiếp tuyến của (C) tại M(0;1) có vecto pháp tuyến \( - 1(x - 0) + 2(y - 1) = 0 \Leftrightarrow x - 2y + 2 = 0\).

- Giải mục 1 trang 43, 44, 45 SGK Toán 10 tập 2 - Kết nối tri thức
- Giải mục 2 trang 46 SGK Toán 10 tập 2 - Kết nối tri thức
- Giải bài 7.13 trang 46 SGK Toán 10 – Kết nối tri thức
- Giải bài 7.15 trang 47 SGK Toán 10 – Kết nối tri thức
- Giải bài 7.16 trang 47 SGK Toán 10 – Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức




