Giải mục 5 trang 37 SGK Toán 11 tập 1 - Kết nối tri thức>
a) Quan sát Hình 1.25, hãy cho biết đường thẳng (y = - 1) cắt đồ thị hàm số (y = cot x) tại mấy điểm trên khoảng (left( {0;pi } right)?)
Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh
HĐ 5
Video hướng dẫn giải
a) Quan sát Hình 1.25, hãy cho biết đường thẳng \(y = - 1\) cắt đồ thị hàm số \(y = \cot x\) tại mấy điểm trên khoảng \(\left( {0;\pi } \right)?\)
b) Dựa vào tính tuần hoàn của hàm cotang, hãy viết công thức nghiệm của phương trình đã cho.
Phương pháp giải:
Nghiệm của phương trình \(\cot x = - 1\) là hoành độ các giao điểm của đường thẳng \(y = - 1\) và đồ thị hàm số \(y = \cot x\)
Lời giải chi tiết:
a) Từ Hình 1.25, ta thấy đường thẳng \(y = - 1\) cắt đồ thị hàm số \(y = \cot x\;\)tại 1 điểm \(x = - \frac{\pi }{4} + \pi \) trên khoảng \(\left( {0;\pi } \right)\)
b) Ta có công thức nghiệm của phương trình là: \(x = - \frac{\pi }{4} + \pi + k\pi \;\left( {k \in \mathbb{Z}} \right)\)
LT5
Video hướng dẫn giải
Giải các phương trình sau:
a) \(\cot x = 1;\) b) \(\sqrt 3 \cot x + 1 = 0\)
Phương pháp giải:
Sử dụng công thức nghiệm \(\cot x = m\; \Leftrightarrow \cot x = \cot \alpha \Leftrightarrow x = \alpha + k\pi \;\;\left( {k \in \mathbb{Z}} \right)\)
Lời giải chi tiết:
a) \(\cot x = 1\; \Leftrightarrow \cot x = \cot \frac{\pi }{4}\;\;\; \Leftrightarrow x = \frac{\pi }{4} + k\pi \;\left( {k \in \mathbb{Z}} \right)\)
b) \(\sqrt 3 \cot x + 1 = 0\;\;\; \Leftrightarrow \sqrt 3 \cot x = - 1\; \Leftrightarrow \cot x = - \frac{{\sqrt 3 }}{3}\;\; \Leftrightarrow \cot x = \cot \left( { - \frac{\pi }{3}} \right)\)
\( \Leftrightarrow x = - \frac{\pi }{3} + k\pi \;\left( {k \in \mathbb{Z}} \right)\)
- Giải mục 6 trang 38 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 1.19 trang 39 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 1.20 trang 39 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 1.21 trang 39 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 1.22 trang 39 SGK Toán 11 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức