 Toán 11, giải toán lớp 11 kết nối tri thức với cuộc sống
                                                
                            Toán 11, giải toán lớp 11 kết nối tri thức với cuộc sống
                         Bài 15. Giới hạn của dãy số Toán 11 kết nối tri thức
                                                        Bài 15. Giới hạn của dãy số Toán 11 kết nối tri thức
                                                    Giải mục 4 trang 108, 109 SGK Toán 11 tập 1 - Kết nối tri thức>
Một loại vi khuẩn được nuôi cấy với số lượng ban đầu là 50. Sau mỗi chu kỳ 4 giờ, số lượng của chúng sẽ tăng gấp đôi. a) Dự đoán công thức tính số vi khuẩn ({u_n}) sau chu kì thứ n b) Sau bao lâu, số lượng vi khuẩn sẽ vượt con số 10 000?
Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh
HĐ5
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 5 trang 108 SGK Toán 11 Kết nối tri thức
Một loại vi khuẩn được nuôi cấy với số lượng ban đầu là 50. Sau mỗi chu kỳ 4 giờ, số lượng của chúng sẽ tăng gấp đôi.
a) Dự đoán công thức tính số vi khuẩn \({u_n}\) sau chu kì thứ n.
b) Sau bao lâu, số lượng vi khuẩn sẽ vượt con số 10 000?
Phương pháp giải:
Dựa vào công thức tổng quát của cấp số nhân \({u_n} = {u_1}.{q^{n - 1}}\) và tổng n số hạng của cấp số nhân \({S_n} = \frac{{{u_1} \left( {{q^n} - 1} \right)}}{{q - 1}}\).
Lời giải chi tiết:
a) \({u_n} = 50. {2^{n - 1}}\).
b) \(10000 = {S_n} = \frac{{50\left( {{2^n} - 1} \right)}}{{2 - 1}} = 50\left( {{2^n} - 1} \right) \Rightarrow {2^n} = 201 \Rightarrow n \approx 7,651\).
Vậy số lượng vi khuẩn sẽ vượt 10000 con sau \(7.651 .4 = 30.604\) giờ.
LT5
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 5 trang 109 SGK Toán 11 Kết nối tri thức
Tính \(\mathop {lim}\limits_{n \to + \infty } \left( {n - \sqrt n } \right)\).
Phương pháp giải:
Biến đổi và dùng công thức giới hạn\(\mathop {\lim }\limits_{n \to + \infty } \frac{1}{{{n^k}}} = 0,k > 0\) để tính toán.
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}\mathop {\lim }\limits_{n \to + \infty } \left( {n - \sqrt n } \right) = \mathop {\lim }\limits_{n \to + \infty } n.\left( {1 - \frac{1}{{\sqrt n }}} \right)\\\mathop {\lim }\limits_{n \to + \infty } n = + \infty ,\mathop {\lim }\limits_{n \to + \infty } \left( {1 - \frac{1}{{\sqrt n }}} \right) = 1\\ \Rightarrow \mathop {\lim }\limits_{n \to + \infty } \left( {n - \sqrt n } \right) = \mathop {\lim }\limits_{n \to + \infty } n.\left( {1 - \frac{1}{{\sqrt n }}} \right) = + \infty \end{array}\)
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ- Bài 5.1 trang 109 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.2 trang 109 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.3 trang 109 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.4 trang 109 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.5 trang 109 SGK Toán 11 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Giải câu hỏi mở đầu trang 119 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 111 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 95 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 88 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 84 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 119 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 111 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 95 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 88 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 84 SGK Toán 11 tập 1 - Kết nối tri thức
 
                 
                 
                                     
                                     
        
 
                                            




 
             
            