Giải mục 1 trang 105, 106 SGK Toán 11 tập 1 - Kết nối tri thức


Cho dãy số (left( {{u_n}} right)) với ({u_n} = frac{{{{left( { - 1} right)}^n}}}{n}) a) Biểu diễn năm số hạng đầu của dãy số này trên trục số b) Bắt đầu từ số hạng nào của dãy, khoảng cách từ ({u_n}) đến 0 nhỏ hơn 0,01?

Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Lựa chọn câu để xem lời giải nhanh hơn

HĐ 1

Video hướng dẫn giải

Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{{{\left( { - 1} \right)}^n}}}{n}\)

a) Biểu diễn năm số hạng đầu của dãy số này trên trục số.

b) Bắt đầu từ số hạng nào của dãy, khoảng cách từ \({u_n}\) đến 0 nhỏ hơn 0,01?

Phương pháp giải:

Dựa vào công thức số hạng tổng quát tìm được 5 số hạng đầu tiên và biểu diễn trên trục số.

Lời giải chi tiết:

a) \({u_1} =  - 1;\;\;{u_2} = \frac{1}{2};\;\;\;{u_3} =  - \frac{1}{3};\;\;\;{u_4} = \frac{1}{4};\;\;\;{u_5} =  - \frac{1}{5}\).

b) Ta có: \({u_{100}} = 0,01\) suy ra bắt đầu từ số hạng thứ 101 khoảng cách từ số hạng đến 0 nhỏ hơn 0,01.

LT 1

Video hướng dẫn giải

Chứng minh rằng: \(\mathop {lim}\limits_{n \to  + \infty } \frac{{{{\left( { - 1} \right)}^{n - 1}}}}{{{3^n}}}\; = 0\).

Phương pháp giải:

Ta nói dãy số \(\left( {{u_n}} \right)\) có giới hạn là 0 khi n dần tới dương vô cực, nếu \(\left| {{u_n}} \right|\) có thể nhỏ hơn một số dương bé tùy ý, kể từ một số hạng nào đó trở đi.

Lời giải chi tiết:

\(\left| {{u_n}} \right| = \frac{{{{\left( { - 1} \right)}^{n - 1}}}}{{{3^n}}}\) có thể nhỏ hơn một số dương bé tùy ý khi n đủ lớn.

Ta có: \(\left| {{u_n}} \right| < 1.69 \times {10^{ - 5}}\) ta cần n > 10.

Vậy các số hạng của dãy số kể từ số hạng thứ 11 đều có giá trị nhỏ hơn \(1.69 \times {10^{ - 5}}\).

HĐ 2

Video hướng dẫn giải

Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{n + {{\left( { - 1} \right)}^n}}}{n}\). Xét dãy số \(\left( {{v_n}} \right)\) xác định bởi \({v_n} = {u_n} - 1\). Tính \(\mathop {lim}\limits_{n \to  + \infty }{v_n}\;\).

Phương pháp giải:

Dãy sô \(\left( {{u_n}} \right)\) có giới hạn là số thực a khi n dần tới dương vô cực nếu \(\left( {{u_n} - a} \right)\; = 0\).

Lời giải chi tiết:

\({u_n} = {u_n} - 1 = \frac{{n + {{\left( { - 1} \right)}^n}}}{n} - 1 = \frac{{n + {{\left( { - 1} \right)}^n} - n}}{n} = \frac{{{{\left( { - 1} \right)}^n}}}{n} \to 0\) khi \(n \to  + \infty \).

Do vậy \({v_n}\; = 0\).

LT 2

Video hướng dẫn giải

Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{{{3.2}^n} - 1}}{{{2^n}}}\). Chứng minh rằng \(\mathop {lim}\limits_{n \to  + \infty } {u_n} = 3\).

Phương pháp giải:

\({u_n}\; = a\) khi và chỉ khi \(\left( {{u_n} - a} \right)\; = 0\).

Lời giải chi tiết:

\({u_n} = \frac{{3 \times {2^n} - 1}}{{{2^n}}} - 3 = \frac{{3 \times {2^n} - 1 - 3 \times {2^n}}}{{{2^n}}} =  - \frac{1}{{{2^n}}} \to 0\) khi \(n \to  + \infty \).

Do vậy \({u_n}\; = 3\).

VD 1

Video hướng dẫn giải

Một quả bóng cao su được thả từ độ cao 5 m xuống một mặt sàn. Sau mỗi lần chạm sàn, quả bóng nảy lên độ cao bằng \(\frac{2}{3}\) độ cao trước đó. Giả sử rằng quả bóng luôn chuyển động vuông góc với mặt sàn và quá trình này tiếp diễn vô hạn lần. Giả sử \({u_n}\) là độ cao (tính bằng mét) của quả bóng sau lần nảy lên thứ n. Chứng minh rằng dãy số \(\left( {{u_n}} \right)\) có giới hạn là 0.

Phương pháp giải:

\({u_n}\; = a\) khi và chỉ khi \(\left( {{u_n} - a} \right)\; = 0\).

Tìm được độ cao của quả bóng sau mỗi lần chạm sàn là cấp số nhân.

Lời giải chi tiết:

Độ cao của quả bóng sau mỗi lần chạm sàn tạo thành cấp số nhân có số hạng tổng quát:

\({u_n} = 5 \times {\left( {\frac{2}{3}} \right)^{n - 1}}\).

Ta có: \({\left( {\frac{2}{3}} \right)^{n - 1}} \to 0\) khi \(n \to  + \infty \).

Suy ra \(5{\left( {\frac{2}{3}} \right)^{n - 1}} \to 0\) khi \(n \to  + \infty \).

Vậy \({u_n}\; = 0\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí