Giải mục 2 trang 61, 62 SGK Toán 10 tập 2 - Chân trời sáng tạo


Viết phương trình tiếp tuyến của đường tròn (C) tại điểm A(4;6) Một vận động viên ném đĩa đã vung đĩa theo một đường tròn (C) có phương trình:

Tổng hợp đề thi học kì 2 lớp 10 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Lựa chọn câu để xem lời giải nhanh hơn

HĐ Khám phá 2

Cho điểm \({M_0}\left( {{x_0};{y_0}} \right)\) nằm trên đường tròn \((C)\) tâm \(I(a;b)\)và cho điểm \(M(x;y)\) tùy ý trong mặt phẳng Oxy. Gọi \(\Delta \) là tiếp tuyến với \((C)\) tại \({M_0}\).

a) Viết biểu thức tọa độ của hai vt \(\overrightarrow {{M_0}M} \) và \(\overrightarrow {{M_0}I} \).

b) Viết biểu thức tọa độ  của tích vô hướng của hai vecto \(\overrightarrow {{M_0}M} \) và \(\overrightarrow {{M_0}I} \).

c) Phương trình \(\overrightarrow {{M_0}M} .\overrightarrow {{M_0}I}  = 0\) là phương trình của đường thẳng nào?

Phương pháp giải:

a) Với \(A(a;b),B(x;y)\) thì tọa độ của vt \(\overrightarrow {AB}  = (x - a;y - b)\).

b) Với \(\overrightarrow a  = \left( {a,b} \right),\overrightarrow b  = (x;y)\) thì \(\overrightarrow a .\overrightarrow b  = ax + by\).

c) Từ tích vô hướng đưa ra kết luận là \(\overrightarrow {{M_0}M}  = \left( {x - {x_0};y - {y_0}} \right)\), \(\overrightarrow {{M_0}I}  = \left( {a - {x_0};b - {y_0}} \right)\).

Lời giải chi tiết:

a) Biểu thức tọa độ của hai vecto \(\overrightarrow {{M_0}M} \) và \(\overrightarrow {{M_0}I} \) là \(\overrightarrow {{M_0}M}  = \left( {x - {x_0};y - {y_0}} \right)\), \(\overrightarrow {{M_0}I}  = \left( {a - {x_0};b - {y_0}} \right)\).

b) Ta có:

\(\overrightarrow {{M_0}M} .\overrightarrow {{M_0}I}  = \left( {x - {x_0}} \right)\left( {a - {x_0}} \right) + \left( {b - {y_0}} \right)\left( {y - {y_0}} \right)\).

c) \(\overrightarrow {{M_0}M} .\overrightarrow {{M_0}I}  = 0 \Rightarrow \overrightarrow {{M_0}M}  \bot \overrightarrow {{M_0}I} \)

\({M_0}I\) là đoạn thẳng nối tâm với điểm thuộc đường tròn, suy ra đường thẳng \(M{M_0}\) là tiếp tuyến của đường tròn tại điểm \({M_0}\), hay chính là \(\Delta \).

Thực hành 3

Viết phương trình tiếp tuyến của đường tròn \((C):{x^2} + {y^2} - 2x - 4y - 20 = 0\) tại điểm \(A(4;6)\).

Phương pháp giải:

Phương trình tiếp tuyến của đường tròn tâm \(I(a;b)\) tại điểm \(M({x_0};{y_0})\)nằm trên đường tròn là: \(\left( {a - {x_0}} \right)\left( {x - {x_0}} \right) + \left( {b - {y_0}} \right)\left( {y - {y_0}} \right) = 0\).

Lời giải chi tiết:

Ta có \({4^2} + {6^2} - 2.4 - 4.6 - 20 = 0\), nên điểm A thuộc (C).

Đường tròn \((C):{x^2} + {y^2} - 2x - 4y - 20 = 0\) có tâm \(I(1;2)\).

Phương trình tiếp tuyến d của (C) tại \(A(4;6)\) là:

\(\left( {1 - 4} \right)\left( {x - 4} \right) + \left( {2 - 6} \right)\left( {y - 6} \right) = 0\)

\(\Leftrightarrow 3x + 4y - 36 = 0\).

Vận dụng 3

Một vận động viên ném đĩa đã vung đĩa theo một đường tròn \((C)\) có phương trình:

\({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = \frac{{169}}{{144}}\).

Khi người đó vung đĩa đến vị trí điểm \(M\left( {\frac{{17}}{{12}};2} \right)\) thì buông đĩa (hình 4). Viết phương trình tiếp tuyến của đường tròn \((C)\) tại điểm M.

Phương pháp giải:

Phương trình tiếp tuyến của đường trong tâm \(I(a;b)\) tại điểm \(M({x_0};{y_0})\) nằm trên đường tròn là: \(\left( {a - {x_0}} \right)\left( {x - {x_0}} \right) + \left( {b - {y_0}} \right)\left( {y - {y_0}} \right) = 0\).

Lời giải chi tiết:

Ta có \({\left( {\frac{{17}}{{12}} - 1} \right)^2} + {\left( {2 - 1} \right)^2} = \frac{{169}}{{144}}\), nên điểm M  thuộc (C).

Đường tròn \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = \frac{{169}}{{144}}\) có tâm \(I(1;1)\).

Phương trình tiếp tuyến d của (C) tại \(M\left( {\frac{{17}}{{12}};2} \right)\) là:

\(\left( {1 - \frac{{17}}{{12}}} \right)\left( {x - \frac{{17}}{{12}}} \right) + \left( {1 - 2} \right)\left( {y - 2} \right) = 0\)

\( \Leftrightarrow  - \frac{5}{{12}}x - y + \frac{{373}}{{144}} = 0\)

\( \Leftrightarrow 5x + 12y - \frac{{373}}{{12}} = 0\).


Bình chọn:
4.3 trên 6 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí