Giải bài 3 trang 62 SGK Toán 10 tập 2 – Chân trời sáng tạo


Lập phương trình đường tròn ngoại tiếp tam giác có tọa độ các đỉnh là:

Đề bài

Lập phương trình đường tròn ngoại tiếp tam giác có tọa độ các đỉnh là:

a) \(M(2;5),N(1;2),P(5;4)\)

b) \(A(0;6),B(7;7),C(8;0)\)

Phương pháp giải - Xem chi tiết

Bước 1: Xác định tâm của đường tròn (điểm cách đều ba đỉnh của tam giác, là giao điểm của 3 đường trung trực)

Bước 2: Tính bán kính của đường tròn (là khoảng cách từ tâm đến một trong ba đỉnh)

Bước 3: Viết phương trình đường tròn \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\) với tâm \(I(a;b)\) và bán kính R

Lời giải chi tiết

a) Gọi A,B lần lượt là trung điểm của MN, MP ta có: \(A\left( {\frac{3}{2};\frac{7}{2}} \right),B\left( {\frac{7}{2};\frac{9}{2}} \right)\)

Đường trung trực \(\Delta \)của đoạn  thẳng MN  là đường thẳng đi qua  \(A\left( {\frac{3}{2};\frac{7}{2}} \right)\) và nhận vt \(\overrightarrow {MN}  = ( - 1; - 3)\) làm vt pháp tuyến, nên có phương trình  \( - x - 3y + 12 = 0\)

Đường trung trực d của đoạn thẳng MP  là đường thẳng đi qua  \(B\left( {\frac{7}{2};\frac{9}{2}} \right)\) và nhận vt \(\overrightarrow {MP}  = (3; - 1)\) làm vt pháp tuyến, nên có phương trình  \(3x - y - 6 = 0\)

\(\Delta \) cắt d tại điểm \(I(3;3)\) cách đều ba điểm M, N, P suy ra đường tròn (C) cần tìm có tâm \(I(3;3)\) và có bán kính \(R = IM = \sqrt 5 \). Vậy (C) có phương trình: \({\left( {x - 3} \right)^2} + {\left( {y - 3} \right)^2} = 5\)

b) Gọi M, N lần lượt là trung điểm của AB, AC ta có: \(M\left( {\frac{7}{2};\frac{{13}}{2}} \right),N\left( {4;3} \right)\)

Đường trung trực \(\Delta \)của đoạn  thẳng AB là đường thẳng đi qua  \(M\left( {\frac{7}{2};\frac{{13}}{2}} \right)\) và nhận vt \(\overrightarrow {BA}  = ( - 7; - 1)\) làm vt pháp tuyến, nên có phương trình  \( - 7x - y + 31 = 0\)

Đường trung trực d của đoạn thẳng AC  là đường thẳng đi qua  \(N\left( {4;3} \right)\) và nhận vt \(\overrightarrow {AC}  = (8; - 6)\) làm vt pháp tuyến, nên có phương trình  \(8x - 6y - 14 = 0\)

\(\Delta \) cắt d tại điểm \(I(4;3)\) cách đều ba điểm A, B, C suy ra đường tròn (C) cần tìm có tâm \(I(4;3)\) và có bán kính \(R = IA = 5\). Vậy (C) có phương trình: \({\left( {x - 4} \right)^2} + {\left( {y - 3} \right)^2} = 25\)


Bình chọn:
4.5 trên 10 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí