Giải bài 9.22 trang 89 SGK Toán 10 – Kết nối tri thức>
Chọn ngẫu nhiên 4 viên bị từ một túi đựng 4 viên bị đỏ và 6 viên bị xanh đôi một khác nhau.
Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Chọn ngẫu nhiên 4 viên bị từ một túi đựng 4 viên bị đỏ và 6 viên bị xanh đôi một khác nhau. Gọi A là biến cố: “Trong bốn viên bi đỏcó cả bị đỏ và cả bi xanh”. Tính P(A) và P(\(\overline A \)).
Lời giải chi tiết
\(\overline A \) là biến cố: “Trong 4 viên bi chỉ có toàn bi đỏ hoặc bi xanh”.
Ta có \(n\left( \Omega \right) = C_{10}^4 = 210\) và \(n\left( {\overline A } \right) = C\;_4^4 + C\;_6^4 = 16.\)
Do đó \(P\left( {\overline A } \right) = \frac{{16}}{{210}}=\frac{{8}}{{105}} \).
Suy ra \(P\left( A \right) = 1 - \frac{{8}}{{105}} = \frac{{97}}{{105}}\).
- Giải bài 9.21 trang 89 SGK Toán 10 – Kết nối tri thức
- Giải bài 9.20 trang 89 SGK Toán 10 – Kết nối tri thức
- Giải bài 9.19 trang 88 SGK Toán 10 – Kết nối tri thức
- Giải bài 9.18 trang 88 SGK Toán 10 – Kết nối tri thức
- Giải bài 9.17 trang 88 SGK Toán 10 – Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Ba đường conic - SGK Toán 10 Kết nối tri thức
- Lý thuyết Đường tròn trong mặt phẳng tọa độ - SGK Toán 10 Kết nối tri thức
- Lý thuyết Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách - SGK Toán 10 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng - SGK Toán 10 Kết nối tri thức
- Lý thuyết Phương trình quy về phương trình bậc hai - SGK Toán 10 Kết nối tri thức
- Lý thuyết Ba đường conic - SGK Toán 10 Kết nối tri thức
- Lý thuyết Đường tròn trong mặt phẳng tọa độ - SGK Toán 10 Kết nối tri thức
- Lý thuyết Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách - SGK Toán 10 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng - SGK Toán 10 Kết nối tri thức
- Lý thuyết Phương trình quy về phương trình bậc hai - SGK Toán 10 Kết nối tri thức