Toán 10, giải toán lớp 10 kết nối tri thức với cuộc sống
Bài tập cuối chương IX Toán 10 Kết nối tri thức
Giải bài 9.14 trang 88 SGK Toán 10 – Kết nối tri thức>
Rút ngẫu nhiên ra một thẻ từ một hộp có 30 tấm thẻ được đánh số từ 1 đến 30. Xác suất để số trên tấm thẻ được rút ra chia hết cho 5 là:
Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Rút ngẫu nhiên ra một thẻ từ một hộp có 30 tấm thẻ được đánh số từ 1 đến 30. Xác suất để số trên tấm thẻ được rút ra chia hết cho 5 là:
A. \(\frac{1}{{30}}\)
B. \(\frac{1}{5}\)
C. \(\frac{1}{3}\)
D. \(\frac{2}{5}\)
Phương pháp giải - Xem chi tiết
Các số chia hết cho 5 là các số có chữ số tận cùng là 0 hoặc 5.
Lời giải chi tiết
Số phần tử của không gian mẫu là\(n\left( \Omega \right) = 30\).
Gọi E là biến cố: “Số trên thẻ được rút ra là số chia hết cho 5”
Ta có \(E = \left\{ {5;10;15;20;25;30} \right\} \Rightarrow n\left( E \right) = 6\)
Vậy xác suất của biến cố E là \(P\left( E \right) = \frac{{n\left( E \right)}}{{n\left( \Omega \right)}} = \frac{1}{5}\).
Chọn B
- Giải bài 9.15 trang 88 SGK Toán 10 – Kết nối tri thức
- Giải bài 9.16 trang 88 SGK Toán 10 – Kết nối tri thức
- Giải bài 9.17 trang 88 SGK Toán 10 – Kết nối tri thức
- Giải bài 9.18 trang 88 SGK Toán 10 – Kết nối tri thức
- Giải bài 9.19 trang 88 SGK Toán 10 – Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức




