Giải bài 9 trang 54 SGK Toán 10 tập 2 – Cánh diều


Trong một hộp có 20 chiếc thẻ cùng loại được viết các số 1, 2, 3, ..., 20 sao cho mỗi thẻ chỉ viết một số và hai thẻ khác nhau viết hai số khác nhau.

Đề bài

Trong một hộp có 20 chiếc thẻ cùng loại được viết các số 1, 2, 3, ..., 20 sao cho mỗi thẻ chỉ viết một số và hai thẻ khác nhau viết hai số khác nhau. Chọn ngẫu nhiên 2 chiếc thẻ. Tính xác suất của biến cố “Hai thẻ được chọn có tích của hai số được viết trên đó là số lẻ”.

Phương pháp giải - Xem chi tiết

Bước 1: Tính số phần tử của không gian mẫu “\(n\left( \Omega  \right)\)”  và số phần tử của kết quả có lợi cho biến cố “\(n\left( A \right)\)” trong đó A là biến cố “Cả 3 sản phẩm được chọn là chính phẩm”

Bước 2: Xác suất của biến cố là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\)

Lời giải chi tiết

a) Mỗi phần tử của không gian mẫu là một tổ hợp chập 2 của 20 phần tử. Do đó, số phần tử của không gian mẫu là: \(n\left( \Omega  \right) = C_{20}^2\) ( phần tử)

b) Gọi A là biến cố “Tích các số trên hai thẻ là số lẻ”

Để tích các số trên thẻ là số lẻ thì cả hai thẻ bốc được đểu phải là số lẻ vậy nên ta phải chọn ngẫu nhiên 2 thẻ từ 10 thẻ số lẻ. Do đó, số phần tử các kết quả thuận lợi cho biến cố A là tổ hợp chập 2 của 10 phần tử: \(n\left( A \right) = C_{10}^2\) ( phần tử)

Vậy xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{C_{10}^2}}{{C_{20}^2}} = \frac{9}{{38}}\)


Bình chọn:
3.8 trên 8 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí