Giải bài 7.47 trang 42 sách bài tập toán 11 - Kết nối tri thức với cuộc sống


Cho hình chóp \(S.ABCD\)có tất cả các cạnh đều bằng \(a\), gọi \(O\)là giao điểm của \(AC\) và \(BD\).

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Cho hình chóp \(S.ABCD\)có tất cả các cạnh đều bằng \(a\), gọi \(O\)là giao điểm của \(AC\) và \(BD\). Khoảng cách giữa hai đường thẳng \(AB\) và \(SD\) bằng

A. \(\frac{{a\sqrt 6 }}{3}\).

B. \(\frac{{a\sqrt 3 }}{2}\).

C. .\(\frac{{a\sqrt 6 }}{3}\).

D. \(\frac{{a\sqrt 6 }}{2}\).

Phương pháp giải - Xem chi tiết

Gọi \(M,N\) lần lượt là trung điểm của các cạnh\(AB,CD\); \(H\) là hình chiếu vuông góc của \(O\) trên \(SN.\)

Vì \(AB{\rm{//}}CD\) nên\(d\left( {AB,SD} \right) = d\left( {AB,(SCD)} \right) = d\left( {M,(SCD)} \right) = 2d\left( {O,(SCD)} \right)\)

Ta có \(\left\{ \begin{array}{l}CD \bot SO\\CD \bot ON\end{array} \right. \Rightarrow CD \bot (SON) \Rightarrow CD \bot OH\)

Khi đó \(\left\{ \begin{array}{l}CD \bot OH\\OH \bot SN\end{array} \right. \Rightarrow OH \bot (SCD) \Rightarrow d\left( {O;(SCD)} \right) = OH.\)

Tam giác \(SOD\) vuông tại \(O\) nên \(O{S^2} = S{D^2} - O{D^2}\)

Tam giác \(SON\) vuông tại \(O\) nên \(\frac{1}{{O{H^2}}} = \frac{1}{{O{N^2}}} + \frac{1}{{O{S^2}}} \Rightarrow OH\)

Vậy \(d\left( {AB,SD} \right) = 2OH\).

Lời giải chi tiết

Gọi \(M,N\) lần lượt là trung điểm của các cạnh\(AB,CD\); \(H\) là hình chiếu vuông góc của \(O\) trên \(SN.\)

Vì \(AB{\rm{//}}CD\) nên \(d\left( {AB,SD} \right) = d\left( {AB,(SCD)} \right) = d\left( {M,(SCD)} \right) = 2d\left( {O,(SCD)} \right)\)

Ta có \(\left\{ \begin{array}{l}CD \bot SO\\CD \bot ON\end{array} \right. \Rightarrow CD \bot (SON) \Rightarrow CD \bot OH\)

Khi đó \(\left\{ \begin{array}{l}CD \bot OH\\OH \bot SN\end{array} \right. \Rightarrow OH \bot (SCD) \Rightarrow d\left( {O;(SCD)} \right) = OH.\)

Tam giác \(SOD\) vuông tại \(O\) nên \(O{S^2} = S{D^2} - O{D^2} = {a^2} - {\left( {\frac{{a\sqrt 2 }}{2}} \right)^2} = \frac{{{a^2}}}{2}\)

Tam giác \(SON\) vuông tại \(O\) nên \(\frac{1}{{O{H^2}}} = \frac{1}{{O{N^2}}} + \frac{1}{{O{S^2}}} = \frac{1}{{\frac{{{a^2}}}{4}}} + \frac{1}{{\frac{{{a^2}}}{2}}} = \frac{6}{{{a^2}}} \Rightarrow OH = \frac{a}{{\sqrt 6 }} = \frac{{a\sqrt 6 }}{6}\)

Vậy \(d\left( {AB,SD} \right) = 2OH = \frac{{a\sqrt 6 }}{3}\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí