Giải bài 7 trang 18 SGK Toán 10 tập 2 – Chân trời sáng tạo


Đề bài

Một chú cá heo nhảy lên khỏi mặt nước sau t giây được cho bởi hàm số \(h\left( t \right) =  - 4,9{t^2} + 9,6t\)

Tính khoảng thời gian cá heo ở trên không.

Phương pháp giải - Xem chi tiết

Bước 1: Từ giả thiết lập bất phương trình

Bước 2: Giải bất phương trình vừa tìm được

Lời giải chi tiết

Khoảng thời gian cá heo ở trên không chính khoảng cá heo cao hơn mặt nước

Ta có bất phương trình \(h\left( t \right) > 0 \Leftrightarrow  - 4,9{t^2} + 9,6t > 0\)

Xét tam thức \(f\left( t \right) =  - 4,9{t^2} + 9,6t\) có \(\Delta  = 92.16 > 0\), có hai nghiệm phân biệt là \({x_1} = 0,{x_2} = \frac{{96}}{{49}}\) và có \(a =  - 4,9 < 0\)

Ta có bảng xét dấu như sau:

Vậy khoảng thời gian cá heo ở trên không là khoảng \(\left( {0;\frac{{96}}{{49}}} \right)\) giây


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.