Giải bài 4 trang 65 SGK Toán 10 tập 1 – Chân trời sáng tạo


Cho tam giác ABC. Chứng minh rằng:

Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Đề bài

Cho tam giác ABC. Chứng minh rằng:

a) \(\sin A = \sin \;(B + C)\)

b) \(\cos A =  - \cos \;(B + C)\)

Phương pháp giải - Xem chi tiết

\(\begin{array}{l}\sin \left( {{{180}^o} - A} \right) = \sin A\\\cos \left( {{{180}^o} - A} \right) =  - \cos A\end{array}\)\(({0^o} \le \widehat A \le {180^o})\)

Lời giải chi tiết

Ta có: \(A+B+C=180^o\)

a)

\(\sin (B + C) = \sin \left( {{{180}^o} - A} \right) = \sin A\)

Vậy \(\sin A = \sin \;(B + C)\)

b)

\(\cos (B + C) = \cos \left( {{{180}^o} - A} \right) =  - \cos A\)

Vậy \(\cos A =  - \cos \;(B + C)\)


Bình chọn:
4.6 trên 14 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí