Giải bài 4 trang 118 SGK Toán 10 tập 1 – Chân trời sáng tạo>
Trong một cuộc thi nghề, người ta ghi lại thời gian hoàn thành một sản phẩm của một số thí nghiệm ở bảng sau:
Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Trong một cuộc thi nghề, người ta ghi lại thời gian hoàn thành một sản phẩm của một số thí nghiệm ở bảng sau:
Thời gian (đơn vị: phút) |
5 |
6 |
7 |
8 |
35 |
Số thí sinh |
1 |
3 |
5 |
2 |
1 |
a) Hãy tìm số trung bình, tứ phân vị và mốt của thời gian thi nghề của các thí sinh trên.
b) Năm ngoái, thời gian thi của các thí sinh có số trung bình và trung vị đều bằng 7. Bạn hãy so sánh thời gian thi nói chung của các thí sinh trong hai năm.
LG a
Hãy tìm số trung bình, tứ phân vị và mốt của thời gian thi nghề của các thí sinh trên.
Phương pháp giải:
Cho bảng số liệu:
Giá trị |
\({x_1}\) |
\({x_2}\) |
… |
\({x_m}\) |
Tần số |
\({f_1}\) |
\({f_2}\) |
… |
\({f_m}\) |
+) Số trung bình: \(\overline x = \frac{{{x_1}.{f_1} + {x_2}.{f_2} + ... + {x_m}.{f_m}}}{{{f_1} + {f_2} + ... + {f_m}}}\)
+) Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm, \(n = {f_1} + {f_2} + ... + {f_m}\)
Bước 2: \({Q_2}\) là trung vị của mẫu số liệu trên.
\({Q_1}\) là trung vị của nửa số liệu đã sắp xếp bên trái \({Q_2}\) (không bao gồm \({Q_2}\) nếu n lẻ)
\({Q_3}\) là trung vị của nửa số liệu đã sắp xếp bên phải \({Q_2}\) (không bao gồm \({Q_2}\) nếu n lẻ)
+) Mốt \({M_o}\) là giá trị có tần số lớn nhất. (Một mẫu có thể có nhiều mốt)
Lời giải chi tiết:
+) Số trung bình: \(\overline x = \frac{{1.5 + 3.6 + 5.7 + 2.8 + 1.35}}{{1 + 3 + 5 + 2 + 1}} = 9,08\)
+) Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm, \(5,6,6,6,7,7,7,7,7,8,8,35\)
Bước 2: Vì \(n = 12\), là số chẵn nên \({Q_2} = \frac{1}{2}(7 + 7) = 7\)
\({Q_1}\) là trung vị của nửa số liệu: \(5,6,6,6,7,7\) Do đó \({Q_1} = \frac{1}{2}(6 + 6) = 6\)
\({Q_3}\) là trung vị của nửa số liệu \(7,7,7,8,8,35\) Do đó \({Q_3} = \frac{1}{2}(7 + 8) = 7,5\)
+) Mốt \({M_o} = 7\)
LG b
Năm ngoái, thời gian thi của các thí sinh có số trung bình và trung vị đều bằng 7. Bạn hãy so sánh thời gian thi nói chung của các thí sinh trong hai năm.
Phương pháp giải:
So sánh:
+) so sánh số trung bình.
+) so sánh trung vị.
Lời giải chi tiết:
+) Nếu so sánh số trung bình: 9,08 > 7 do đó thời gian thi nói chung của các thí sinh trong năm nay là lớn hơn so với năm trước.
+) Nếu so sánh trung vị: Trung vị của hai năm đều bằng 7 do đó thời gian thi nói chung của các thí sinh trong hai năm là như nhau.
Do có 1 thí sinh có thời gian thi lớn hơn hẳn so với các thí sinh khác => nên so sánh theo trung vị.
- Giải bài 5 trang 118 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 6 trang 119 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 7 trang 119 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 3 trang 118 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 1 trang 118 SGK Toán 10 tập 1 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải Hoạt động 3 trang 96 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 2 trang 94 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 1 trang 92, 93 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 3 trang 90 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 2 trang 89 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 3 trang 96 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 2 trang 94 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 1 trang 92, 93 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 3 trang 90 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 2 trang 89 SGK Toán 10 tập 2 - Chân trời sáng tạo