Giải bài 2 trang 52 SGK Toán 10 tập 2 – Cánh diều


Đề bài

Một hộp có 4 tấm bìa cùng loại, mỗi tấm bìa được ghi một trong các số 1, 2, 3, 4 hai tấm bìa khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên đồng thời 3 tấm bìa từ trong hộp.

a) Tính số phần tử của không gian mẫu.

b) Xác định các biến cố sau:

A: “Tổng các số trên ba tấm bìa bằng 9”;

B: “Các số trên ba tấm bìa là ba số tự nhiên liên tiếp”.

c) Tính P(A), P(B).

Phương pháp giải - Xem chi tiết

a) Rút ngẫu nhiên đồng thời 3 tấm bìa từ 4 tấm bìa ở trong hộp \( \Rightarrow \)Sử dụng công thức tổ hợp

b) Liệt kê các trường hợp có lợi cho các biến cố

c) Xác suất của biến cố là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}};P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega  \right)}}\)

Lời giải chi tiết

a) Mỗi phần tử của không gian mẫu là một tổ hợp chập 3 của 4 phần tử. Do đó, số phần tử của không gian mẫu là: \(n\left( \Omega  \right) = C_4^3\) ( phần tử)

b) +) Sự kiện “Tổng các số trên ba tấm bìa bằng 9” tương ứng với biến cố \(A = \left\{ {\left( {4;3;2} \right)} \right\}\)

+) Sự kiện “Các số trên ba tấm bìa là ba số tự nhiên liên tiếp” tương ứng với biến cố \(B = \left\{ {\left( {1;2;3} \right),\left( {2;3;4} \right)} \right\}\)

c) +) Ta có: \(n\left( A \right) = 1\),\(n\left( B \right) = 2\)

+) Vậy xác suất của biến cố A và B là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{1}{4};P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega  \right)}} = \frac{2}{4} = \frac{1}{2}\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Cánh diều - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.