Đề thi học kì 2 Toán 8 - Đề số 4 - Cánh diều
Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Cánh diều
Toán - Văn - Anh - Khoa học tự nhiên
Phần trắc nghiệm (3 điểm) Câu 1: Trong các phương trình sau, phương trình bậc nhất một ẩn là
Đề bài
Trong các phương trình sau, phương trình bậc nhất một ẩn là
-
A.
\({x^2} - 1 = 0\).
-
B.
\(3x + 2 = 0\).
-
C.
\(\frac{1}{x} - 3x = 0\).
-
D.
\(\frac{2}{{x - 3}} = 0\).
Nghiệm của phương trình \(4\left( {x - 1} \right) - \left( {x - 2} \right) = - x\) là?
-
A.
\(x = 2\).
-
B.
\(x = \frac{1}{2}\).
-
C.
\(x = 1\).
-
D.
\(x = - 1\).
Phương trình bậc nhất một ẩn \(ax + b = 0\left( {a \ne 0} \right)\). Hạng tử tự do là
-
A.
a.
-
B.
b.
-
C.
0.
-
D.
x.
Phương trình nào dưới đây chỉ có một nghiệm
-
A.
\(4x - 1 = 4x + 3\).
-
B.
\(5 + 2x = 2x - 5\).
-
C.
\(3x - 2x = 3x + 1\).
-
D.
\(x - 7x = 1 - 6x\).
Gọi \(x\) (km) là chiều dài quãng đường AB. Một xe máy đi từ A đến B với vận tốc 40 km/h và đi từ B về A với vận tốc 50 km/h. Biểu thức biểu thị tổng thời gian xe máy đi từ A đến B và từ B về A là
-
A.
\(\frac{x}{{40}} + \frac{x}{{50}}\).
-
B.
\(\frac{x}{{40}} - \frac{x}{{50}}\).
-
C.
\(\frac{x}{{40}}\).
-
D.
\(\frac{x}{{50}}\).
Hai tam giác đồng dạng với nhau theo trường hợp góc – góc nếu:
-
A.
Ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia.
-
B.
Có hai cặp cạnh tương ứng bằng nhau.
-
C.
Hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và hai góc tạo bởi các cặp cạnh bằng nhau.
-
D.
Hai góc của tam giác này lần lượt bằng hai góc của tam giác kia.
Cho $\Delta ABC\backsim \Delta A'B'C'$. Khẳng định nào sau đây là sai?
-
A.
\(\frac{{AB}}{{A'B'}} = \frac{{A'C'}}{{AC}} = \frac{{BC}}{{B'C'}}\).
-
B.
\(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}}\).
-
C.
\(\frac{{B'C'}}{{BC}} = \frac{{A'C'}}{{AC}} = \frac{{A'B'}}{{AB}}\).
-
D.
\(\frac{{AB}}{{A'B'}} = \frac{{AC}}{{A'C'}} = \frac{{BC}}{{B'C'}}\).
Điều kiện để $\Delta ABC\backsim \Delta DEF$ theo trường hợp cạnh – góc – cạnh nếu \(\widehat B = \widehat E\) là:
-
A.
\(\frac{{AB}}{{AC}} = \frac{{DE}}{{EF}}\).
-
B.
\(\frac{{AB}}{{DE}} = \frac{{BC}}{{EF}}\).
-
C.
\(\frac{{AB}}{{EF}} = \frac{{BC}}{{DE}}\).
-
D.
\(\frac{{AB}}{{DE}} = \frac{{AC}}{{DF}}\).
Trong hình dưới đây, các tam giác nào đồng dạng với nhau là
-
A.
$\Delta DEF\backsim \Delta HIK$.
-
B.
$\Delta DEF\backsim \Delta MNP$.
-
C.
$\Delta HIK\backsim \Delta MNP$.
-
D.
Cả 3 tam giác đồng dạng.
Cho hình vẽ sau, giá trị của x là:
-
A.
6,4.
-
B.
3,6.
-
C.
17,7.
-
D.
5,6.
Trong các hình sau, cặp hình nào không phải luôn đồng dạng?
-
A.
Tam giác cân.
-
B.
Hình tròn.
-
C.
Tam giác đều.
-
D.
Hình vuông.
Hình ABCD đồng dạng phối cảnh với hình EFGH theo tỉ số đồng dạng là
-
A.
\(k = \frac{1}{2}\).
-
B.
\(k = 1\).
-
C.
\(k = 2\).
-
D.
\(k = 4\).
Lời giải và đáp án
Trong các phương trình sau, phương trình bậc nhất một ẩn là
-
A.
\({x^2} - 1 = 0\).
-
B.
\(3x + 2 = 0\).
-
C.
\(\frac{1}{x} - 3x = 0\).
-
D.
\(\frac{2}{{x - 3}} = 0\).
Đáp án : B
Phương trình bậc nhất một ẩn có dạng \(ax + b = 0\) với \(a \ne 0\).
Phương trình bậc nhất một ẩn là phương trình \(3x + 2 = 0\).
Đáp án B.
Nghiệm của phương trình \(4\left( {x - 1} \right) - \left( {x - 2} \right) = - x\) là?
-
A.
\(x = 2\).
-
B.
\(x = \frac{1}{2}\).
-
C.
\(x = 1\).
-
D.
\(x = - 1\).
Đáp án : B
Đưa phương trình về dạng \(ax + b = 0\) để giải.
\(\begin{array}{l}4\left( {x - 1} \right) - \left( {x - 2} \right) = - x\\4x - 4 - x + 2 = - x\\3x - 2 = - x\\3x + x = 2\\4x = 2\\x = \frac{1}{2}\end{array}\)
Vậy \(x = \frac{1}{2}\)
Đáp án B.
Phương trình bậc nhất một ẩn \(ax + b = 0\left( {a \ne 0} \right)\). Hạng tử tự do là
-
A.
a.
-
B.
b.
-
C.
0.
-
D.
x.
Đáp án : B
Dựa vào kiến thức về phương trình bậc nhất một ẩn.
Phương trình bậc nhất một ẩn \(ax + b = 0\left( {a \ne 0} \right)\) có hạng tử tự do là b.
Đáp án B.
Phương trình nào dưới đây chỉ có một nghiệm
-
A.
\(4x - 1 = 4x + 3\).
-
B.
\(5 + 2x = 2x - 5\).
-
C.
\(3x - 2x = 3x + 1\).
-
D.
\(x - 7x = 1 - 6x\).
Đáp án : C
Đưa phương trình về dạng ax + b = 0 để giải phương trình.
Ta có:
\(\begin{array}{l}4x - 1 = 4x + 3\\4x - 4x = 3 + 1\end{array}\)
\(0x = 4\) (vô lí)
Phương trình \(4x - 1 = 4x + 3\) vô nghiệm
Giải tương tự, ta được:
Phương trình \(5 + 2x = 2x - 5\) vô nghiệm;
Phương trình \(3x - 2x = 3x + 1\) có nghiệm duy nhất là \(x = - \frac{1}{2}\);
Phương trình \(x - 7x = 1 - 6x\) vô nghiệm.
Đáp án C.
Gọi \(x\) (km) là chiều dài quãng đường AB. Một xe máy đi từ A đến B với vận tốc 40 km/h và đi từ B về A với vận tốc 50 km/h. Biểu thức biểu thị tổng thời gian xe máy đi từ A đến B và từ B về A là
-
A.
\(\frac{x}{{40}} + \frac{x}{{50}}\).
-
B.
\(\frac{x}{{40}} - \frac{x}{{50}}\).
-
C.
\(\frac{x}{{40}}\).
-
D.
\(\frac{x}{{50}}\).
Đáp án : A
Biểu thị thời gian đi và về theo x.
Thời gian xe máy đi từ A đến B là: \(\frac{x}{{40}}\) (h)
Thời gian xe máy đi từ B về A là: \(\frac{x}{{50}}\) (h)
Vậy biểu thức biểu thị tổng thời gian xe máy đi từ A đến B và từ B về A là: \(\frac{x}{{40}} + \frac{x}{{50}}\).
Đáp án A.
Hai tam giác đồng dạng với nhau theo trường hợp góc – góc nếu:
-
A.
Ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia.
-
B.
Có hai cặp cạnh tương ứng bằng nhau.
-
C.
Hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và hai góc tạo bởi các cặp cạnh bằng nhau.
-
D.
Hai góc của tam giác này lần lượt bằng hai góc của tam giác kia.
Đáp án : D
Dựa vào trường hợp đồng dạng góc – góc của hai tam giác.
Hai tam giác đồng dạng với nhau theo trường hợp góc – góc nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia.
Đáp án D.
Cho $\Delta ABC\backsim \Delta A'B'C'$. Khẳng định nào sau đây là sai?
-
A.
\(\frac{{AB}}{{A'B'}} = \frac{{A'C'}}{{AC}} = \frac{{BC}}{{B'C'}}\).
-
B.
\(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}}\).
-
C.
\(\frac{{B'C'}}{{BC}} = \frac{{A'C'}}{{AC}} = \frac{{A'B'}}{{AB}}\).
-
D.
\(\frac{{AB}}{{A'B'}} = \frac{{AC}}{{A'C'}} = \frac{{BC}}{{B'C'}}\).
Đáp án : A
Dựa vào tính chất của hai tam giác đồng dạng.
Vì $\Delta ABC\backsim \Delta A'B'C'$ nên \(\frac{{AB}}{{A'B'}} = \frac{{AC}}{{A'C'}} = \frac{{BC}}{{B'C'}}\) hay \(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}}\) suy ra B, C, D đúng.
Đáp án A.
Điều kiện để $\Delta ABC\backsim \Delta DEF$ theo trường hợp cạnh – góc – cạnh nếu \(\widehat B = \widehat E\) là:
-
A.
\(\frac{{AB}}{{AC}} = \frac{{DE}}{{EF}}\).
-
B.
\(\frac{{AB}}{{DE}} = \frac{{BC}}{{EF}}\).
-
C.
\(\frac{{AB}}{{EF}} = \frac{{BC}}{{DE}}\).
-
D.
\(\frac{{AB}}{{DE}} = \frac{{AC}}{{DF}}\).
Đáp án : B
Dựa vào trường hợp đồng dạng cạnh – góc – cạnh.
Để $\Delta ABC\backsim \Delta DEF$ theo trường hợp cạnh – góc – cạnh thì \(\widehat B = \widehat E\) và \(\frac{{AB}}{{DE}} = \frac{{BC}}{{EF}}\).
Đáp án B.
Trong hình dưới đây, các tam giác nào đồng dạng với nhau là
-
A.
$\Delta DEF\backsim \Delta HIK$.
-
B.
$\Delta DEF\backsim \Delta MNP$.
-
C.
$\Delta HIK\backsim \Delta MNP$.
-
D.
Cả 3 tam giác đồng dạng.
Đáp án : B
Dựa vào các trường hợp đồng dạng của hai tam giác vuông.
Xét \(\Delta DEF\) và \(\Delta MNP\) có:
\(\begin{array}{l}\widehat D = \widehat M = {90^0}\\\frac{{DE}}{{MN}} = \frac{{EF}}{{NP}}\left( {\frac{8}{{12}} = \frac{{12}}{{18}}\left( { = \frac{2}{3}} \right)} \right)\end{array}\)
nên $\Delta DEF\backsim \Delta MNP$(cạnh huyền – cạnh góc vuông)
Áp dụng định lí Pythagore vào tam giác HIK có:
\(KI = \sqrt {{{18}^2} + {{24}^2}} = 30\)
Vì \(\frac{8}{{12}} = \frac{2}{3} \ne \frac{{18}}{{30}} = \frac{3}{5}\) nên \(\Delta DEF\) không đồng dạng với \(\Delta HIK\).
Điều này dẫn đến \(\Delta MNP\) không đồng dạng với \(\Delta HIK\)(vì $\Delta DEF\backsim \Delta MNP$)
Đáp án B.
Cho hình vẽ sau, giá trị của x là:
-
A.
6,4.
-
B.
3,6.
-
C.
17,7.
-
D.
5,6.
Đáp án : B
Dựa vào kiến thức về hai tam giác vuông đồng dạng để tìm x.
Xét \(\Delta ABC\) và \(\Delta ADE\) có:
\(\widehat B = \widehat D = {90^0}\)
\(\widehat A\) chung
Suy ra $\Delta ABC\backsim \Delta ADE$ (g.g)
Do đó \(\frac{{AB}}{{BC}} = \frac{{AD}}{{DE}}\) hay \(\frac{{10}}{{9,6 + 5,4}} = \frac{{AD}}{{9,6}}\)
Suy ra \(AD = 9,6.\frac{{10}}{{9,6 + 5,4}} = 6,4\)
Vậy \(x = AB - AD = 10 - 6,4 = 3,6\).
Đáp án B.
Trong các hình sau, cặp hình nào không phải luôn đồng dạng?
-
A.
Tam giác cân.
-
B.
Hình tròn.
-
C.
Tam giác đều.
-
D.
Hình vuông.
Đáp án : A
Dựa vào đặc điểm của các hình để xác định.
Tam giác cân không phải luôn đồng dạng.
Đáp án A.
Hình ABCD đồng dạng phối cảnh với hình EFGH theo tỉ số đồng dạng là
-
A.
\(k = \frac{1}{2}\).
-
B.
\(k = 1\).
-
C.
\(k = 2\).
-
D.
\(k = 4\).
Đáp án : A
Dựa vào số đo các cạnh để tìm tỉ số.
Ta có: \(\frac{3}{6} = \frac{4}{8} = \frac{1}{2}\) nên hình ABCD đồng dạng phối cảnh với hình EFGH theo tỉ số đồng dạng là \(k = \frac{1}{2}\).
Đáp án A.
Đưa phương trình về dạng \(ax + b = 0\) để giải.
a) \(8 + 2\left( {x - 1} \right) = 20\)
\(\begin{array}{l}8 + 2x - 2 = 20\\2x + 6 = 20\\2x = 20 - 6\\2x = 14\\x = 7\end{array}\)
Vậy \(x = 7\)
b) \(4\left( {3x - 2} \right) + 3\left( {x - 4} \right) = 7x + 20\)
\(\begin{array}{l}12x - 8 + 3x - 12 = 7x + 20\\12x + 3x - 7x = 20 + 8 + 12\\8x = 40\\x = 5\end{array}\)
Vậy \(x = 5\)
c) \(\frac{{2x}}{3} + x = \frac{{2x + 5}}{6} + \frac{1}{2}\)
\(\begin{array}{l}\frac{{2.2x}}{6} + \frac{{6x}}{6} = \frac{{2x + 5}}{6} + \frac{3}{6}\\4x + 6x = 2x + 5 + 3\\10x - 2x = 8\\8x = 8\\x = 1\end{array}\)
Vậy \(x = 1\)
Giải bài toán bằng cách lập phương trình.
Gọi số thảm xí nghiệp phải dệt trong 1 ngày theo hợp đồng là x (tấm) (x > 0)
Biểu diễn năng suất mỗi ngày của xí nghiệp, số thảm theo x và lập phương trình.
Giải phương trình và kiểm tra nghiệm.
Gọi số thảm xí nghiệp phải dệt trong 1 ngày theo hợp đồng là x (tấm) (x > 0)
Thực tế một ngày xí nghiệp dệt được: x + 7 (tấm)
Số thảm len mà xí nghiệp phải dệt theo hợp đồng là: 17x (tấm)
Thực tế số thảm xí nghiệp dệt được là:
(17 – 2).(x + 7) = 15(x + 7) (tấm)
Theo bài ra ta có phương trình:
\(15(x + 7) = 17x + 7\)
Giải phương trình ta được: \(x = 49\) (thỏa mãn)
Vậy số thảm len xí nghiệp phải dệt theo hợp đồng là: 17.49 = 833 (tấm)
a) Chứng minh $\Delta ABE\backsim \Delta ACF$ theo trường hợp góc – góc suy ra tỉ số các cạnh tương ứng suy ra \(AE.AC = AF.AB\).
b) Chứng minh $\Delta ANB\backsim \Delta ENA$ (g.g) suy ra tỉ số các cặp cạnh tương ứng bằng nhau suy ra \(A{N^2} = NE.NB\).
c) Dựa vào các tỉ số của câu a và b suy ra \(\frac{{AM}}{{AF}} = \frac{{AB}}{{AM}}\) suy ra $\Delta AMF\backsim \Delta ABM\left( c.g.c \right)$.
Từ đó suy ra số đo góc AMB.
a) Xét \(\Delta ABE\) và \(\Delta ACF\) có:
\(\widehat {AEB} = \widehat {AFC} = {90^0}\)
\(\widehat {BAC}\) chung
Suy ra $\Delta ABE\backsim \Delta ACF$ (g.g). (đpcm)
Suy ra \(\frac{{AB}}{{AC}} = \frac{{AE}}{{AF}}\) hay \(AB.AF = AE.AC\)(đpcm) (1)
b) Xét \(\Delta ANE\) và \(\Delta ACN\) có:
\(\widehat {AEN} = \widehat {ANC} = {90^0}\)
\(\widehat {NAC}\) chung
Suy ra $\Delta ANE\backsim \Delta ACN$ (g.g).
Suy ra \(\frac{{AN}}{{AC}} = \frac{{AE}}{{AN}}\) hay \(A{N^2} = AC.AE\) (đpcm). (2)
c) Từ (1) và (2) suy ra \(AB.AF = A{N^2}\).
Mà AM = AN (gt) suy ra \(AM = AB.AF\) hay \(\frac{{AM}}{{AF}} = \frac{{AB}}{{AM}}\).
Xét \(\Delta AMF\) và \(\Delta ABM\) có:
\(\widehat {BAM}\) chung
\(\frac{{AM}}{{AF}} = \frac{{AB}}{{AM}}\) (cmt)
Suy ra $\Delta AMF\backsim \Delta ABM\left( c.g.c \right)$
Suy ra \(\widehat {AMB} = \widehat {AFM} = {90^0}\).
Gọi tuổi thọ của nhà toán học Diphante là x, \(x \in N*\).
Biểu diễn các đại lượng theo x và lập phương trình.
Giải phương trình và kiểm tra nghiệm.
Gọi tuổi thọ của nhà toán học Diphante là x (tuổi), \(x \in N*\).
Tuổi niên thiếu của ông là \(\frac{1}{6}x\)
Thời thanh niên của ông là \(\frac{1}{{12}}x\)
Thời vợ chồng chưa có con là: \(\frac{1}{7}x\)
Tuổi của con trai ông là: \(\frac{1}{2}x\)
Theo bài ra ta có phương trình:
\(\frac{1}{6}x + \frac{1}{{12}}x + \frac{1}{7}x + 5 + \frac{1}{2}x + 4 = x\)
Giải phương trình ta được \(x = 84\left( {TM} \right)\)
Vậy tuổi thọ của Diophante là 84 tuổi
Nhân cả hai vế của phương trình với 9, phương trình trở thành \(\left( {3x - 2} \right){\left( {3x + 3} \right)^2}\left( {3x + 8} \right) = - 144\).
Đặt \(3x + 3 = t\), biến đổi phương trình thành \(\left( {t - 5} \right){t^2}\left( {t + 5} \right) = - 144\).
Giải phương trình ta được các giá trị của t.
Thay \(t = 3x + 3\) ta tìm đc x.
Nhân cả hai vế của phương trình \(\left( {3x - 2} \right){\left( {x + 1} \right)^2}\left( {3x + 8} \right) = - 16\) với 9, ta được:
\(\begin{array}{l}9.\left( {3x - 2} \right){\left( {x + 1} \right)^2}\left( {3x + 8} \right) = - 16.9\\\left( {3x - 2} \right){\left[ {3\left( {x + 1} \right)} \right]^2}\left( {3x + 8} \right) = - 144\\\left( {3x - 2} \right){\left( {3x + 3} \right)^2}\left( {3x + 8} \right) = - 144\end{array}\)
Đặt \(3x + 3 = t\) suy ra \(3x - 2 = t - 5\); \(3x + 8 = t + 5\)
Ta được phương trình biến t như sau:
\(\left( {t - 5} \right){t^2}\left( {t + 5} \right) = - 144\)
\(\begin{array}{l}{t^4} - 25{t^2} + 144 = 0\\\left( {{t^2} - 9} \right)\left( {{t^2} - 16} \right) = 0\\\left[ \begin{array}{l}{t^2} = 9\\{t^2} = 16\end{array} \right.\\\left[ \begin{array}{l}t = \pm 3\\t = \pm 4\end{array} \right.\end{array}\)
Thay \(t = 3x + 3\) ta được:
Vậy nghiệm của phương trình là \(x \in \left\{ {0; - 2;\frac{1}{3};\frac{{ - 7}}{3}} \right\}\).
Phần trắc nghiệm (3 điểm) Câu 1: Để giải phương trình $frac{2x-3}{4}-frac{1-x}{5}=1$, một bạn học sinh thực hiện như sau:
Phần trắc nghiệm (3 điểm) Câu 1: Trong các phương trình sau, phương trình bậc nhất một ẩn là
Phần trắc nghiệm (3 điểm) Câu 1: Trong các phương trình sau, phương trình nào là phương trình bậc nhất một ẩn?
Phần trắc nghiệm (3 điểm) Câu 1: Trong các phương trình sau, phương trình nào là phương trình bậc nhất một ẩn?
A. NỘI DUNG ÔN TẬP Đại số Phương trình bậc nhất một ẩn - Phương trình bậc nhất một ẩn - Ứng dụng của phương trình bậc nhất một ẩn