Bài 7 trang 156 SGK Đại số 10


Giải bài 7 trang 156 SGK Đại số 10. Chứng minh các đồng nhất thức.

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh các đồng nhất thức.

LG a

\(\displaystyle {{1 - \cos x + \cos 2x} \over {\sin 2x - {\mathop{\rm s}\nolimits} {\rm{in x}}}} = \cot x\)

Phương pháp giải:

Sử dụng các công thức:

\(\begin{array}{l}
\cos 2\alpha = 2{\cos ^2}\alpha - 1\\
\sin 2\alpha = 2\sin \alpha \cos \alpha
\end{array}\)

Lời giải chi tiết:

\(\begin{array}{l}
\dfrac{{1 - \cos x + \cos 2x}}{{\sin 2x - \sin x}}\\
= \dfrac{{1 - \cos x + 2{{\cos }^2}x - 1}}{{2\sin x\cos x - \sin x}}\\
= \dfrac{{2{{\cos }^2}x - \cos x}}{{2\sin x\cos x - \sin x}}\\
= \dfrac{{\cos x\left( {2\cos x - 1} \right)}}{{\sin x\left( {2\cos x - 1} \right)}}\\
= \dfrac{{\cos x}}{{\sin x}}\\
= \cot x 
\end{array}\)

LG b

\(\displaystyle {{{\mathop{\rm \sin x}\nolimits}  + \sin{x \over 2}} \over {1 + \cos x + \cos {x \over 2}}} = \tan {x \over 2}\)

Phương pháp giải:

Sử dụng các công thức:

\(\begin{array}{l}
\cos 2\alpha = 2{\cos ^2}\alpha - 1\\
\sin 2\alpha = 2\sin \alpha \cos \alpha 
\end{array}\)

Lời giải chi tiết:

\(\begin{array}{l}
\dfrac{{\sin x + \sin \dfrac{x}{2}}}{{1 + \cos x + \cos \dfrac{x}{2}}}\\
= \dfrac{{\sin \left( {2.\dfrac{x}{2}} \right) + \sin \dfrac{x}{2}}}{{1 + \cos \left( {2.\dfrac{x}{2}} \right) + \cos \dfrac{x}{2}}}\\
= \dfrac{{2\sin \dfrac{x}{2}\cos \dfrac{x}{2} + \sin \dfrac{x}{2}}}{{1 + 2{{\cos }^2}\dfrac{x}{2} - 1 + \cos \dfrac{x}{2}}}\\
= \dfrac{{\sin \dfrac{x}{2}\left( {2\cos \dfrac{x}{2} + 1} \right)}}{{2{{\cos }^2}\dfrac{x}{2} + \cos \dfrac{x}{2}}}\\
= \dfrac{{\sin \dfrac{x}{2}\left( {2\cos \dfrac{x}{2} + 1} \right)}}{{\cos \dfrac{x}{2}\left( {2\cos \dfrac{x}{2} + 1} \right)}}\\
= \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}\\
= \tan \dfrac{x}{2}
\end{array}\)

LG c

\(\displaystyle {{2\cos 2x - \sin 4x} \over {2\cos 2x + \sin 4x}} = {\tan ^2}({\pi  \over 4} - x)\)

Phương pháp giải:

Sử dụng các công thức:

\(\begin{array}{l}
\sin 2\alpha = 2\sin \alpha \cos \alpha 
\end{array}\)

\(\sin \alpha  = \cos \left( {\dfrac{\pi }{2} - \alpha } \right)\)

\(\cos 2\alpha  = 2{\cos ^2}\alpha  - 1 = 1 - 2{\sin ^2}\alpha \)

Lời giải chi tiết:

\(\displaystyle \, \, {{2\cos 2x - \sin 4x} \over {2\cos 2x + \sin 4x}}\)

\(\displaystyle = {{2\cos 2x - 2\sin2 x\cos 2x} \over {2\cos 2x + 2\sin 2x\cos 2x}}\)

\(\displaystyle = \dfrac{{2\cos 2x\left( {1 - \sin 2x} \right)}}{{2\cos 2x\left( {1 + \sin 2x} \right)}}\)

\(\displaystyle = {{1 - \sin 2x} \over {1 + \sin 2x}}\)
\(\displaystyle = {{1 - \cos ({\pi \over 2} - 2x)} \over {1 + \cos ({\pi \over 2} - 2x)}}\)

\(\displaystyle \begin{array}{l}
= \dfrac{{1 - \cos \left[ {2.\left( {\dfrac{\pi }{4} - x} \right)} \right]}}{{1 + \cos \left[ {2.\left( {\dfrac{\pi }{4} - x} \right)} \right]}}\\
= \dfrac{{1 - \left[ {1 - 2{{\sin }^2}\left( {\dfrac{\pi }{4} - x} \right)} \right]}}{{1 + \left[ {2{{\cos }^2}\left( {\dfrac{\pi }{4} - x} \right) - 1} \right]}}
\end{array}\)

\(\displaystyle = {{2{{\sin }^2}({\pi \over 4} - x)} \over {2{{\cos }^2}({\pi \over 4} - x)}}\) 
\(\displaystyle = {\tan ^2}({\pi \over 4} - x) \)

Cách khác:

\(\displaystyle VT= {{2\cos 2x - \sin 4x} \over {2\cos 2x + \sin 4x}}\)

\(\displaystyle = {{2\cos 2x - 2\sin2 x\cos 2x} \over {2\cos 2x + 2\sin 2x\cos 2x}}\)

\(\displaystyle = \dfrac{{2\cos 2x\left( {1 - \sin 2x} \right)}}{{2\cos 2x\left( {1 + \sin 2x} \right)}}\)

\(\displaystyle = {{1 - \sin 2x} \over {1 + \sin 2x}}\)

\(\begin{array}{l}
VP = {\tan ^2}\left( {\frac{\pi }{4} - x} \right)\\
= \dfrac{{{{\sin }^2}\left( {\frac{\pi }{4} - x} \right)}}{{{{\cos }^2}\left( {\frac{\pi }{4} - x} \right)}}\\
= \dfrac{{\frac{{1 - \cos \left[ {2\left( {\frac{\pi }{4} - x} \right)} \right]}}{2}}}{{\frac{{1 + \cos \left[ {2\left( {\frac{\pi }{4} - x} \right)} \right]}}{2}}}\\
= \dfrac{{2.\frac{{1 - \cos \left[ {2\left( {\frac{\pi }{4} - x} \right)} \right]}}{2}}}{{2.\frac{{1 + \cos \left[ {2\left( {\frac{\pi }{4} - x} \right)} \right]}}{2}}}\\
= \frac{{1 - \cos \left( {\frac{\pi }{2} - 2x} \right)}}{{1 + \cos \left( {\frac{\pi }{2} - 2x} \right)}}\\
= \frac{{1 - \sin 2x}}{{1 + \sin 2x}}
\end{array}\)

Vậy VT=VP hay ta có đpcm.

LG d

\(\displaystyle \tan x - \tan y = {{\sin (x - y)} \over {\cos x.cosy}}\)

Phương pháp giải:

Sử dụng các công thức:

\(\begin{array}{l}
\tan \alpha = \dfrac{{\sin \alpha }}{{\cos \alpha }}\\
\sin a\cos b - \sin b\cos a = \sin \left( {a - b} \right)
\end{array}\)

Lời giải chi tiết:

\(\displaystyle d) \tan x - \tan y\)

\(\displaystyle = {{{\mathop{\rm sinx}\nolimits} } \over {{\mathop{\rm cosx}\nolimits} }} - {{\sin y} \over {\cos y}}\)

\(\displaystyle = {{\sin {\rm{x}}\cos y - \cos x\sin y} \over {\cos x\cos y}}\)

\(\displaystyle = {{\sin (x - y)} \over {\cos x\cos y}}.\)

 Loigiaihay.com


Bình chọn:
4 trên 31 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

>> Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài