Bài 2 trang 155 SGK Đại số 10

Bình chọn:
3.3 trên 4 phiếu

Giải bài 2 trang 155 SGK Đại số 10. Nêu định nghĩa của tan α, cot α và giải thích vì sao ta có:

Đề bài

Nêu định nghĩa của \(\tan α, \, \, \cot α\) và giải thích vì sao ta có:

\(\tan(α+kπ) = \tanα; k ∈\mathbb Z\)

\(\cot(α+kπ) = \cotα; k ∈\mathbb Z\)

Phương pháp giải - Xem chi tiết

Áp dụng công thức: \(\tan \alpha  = {{\sin \alpha } \over {\cos \alpha }},\cot \alpha  = {{{\rm{cos}}\alpha } \over {\sin \alpha }}.\)

Lời giải chi tiết

\(\tan \alpha  = {{\sin \alpha } \over {\cos \alpha }},\cot \alpha  = {{{\rm{cos}}\alpha } \over {\sin \alpha }}\)

Suy ra \(\tan (\alpha  + k\pi ) = {{\sin (\alpha  + k\pi )} \over {\cos (\alpha  + k\pi )}}\)

+) Nếu \(k\) chẵn ta có:

\(\sin(α+kπ) = \sin α\)

\(\cos(α+kπ) = \cos α\)

+) Nếu \(k\) lẻ ta có:

\(\sin(α+kπ) = - \sin α\)

\(\cos(α+kπ) = - \cos α\)

Suy ra \(\tan(α+kπ) = \tanα ; \,  k ∈\mathbb Z.\)

Tương tự ta có: \(\cot(α+kπ) = \cotα;\,  k ∈\mathbb Z.\)

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

Các bài liên quan: - Ôn tập chương VI - Cung và góc lượng giác. Công thức lượng giác

>>Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu