

Bài 5.13 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức>
Cho hàm số (fleft( x right) = frac{2}{{left( {x - 1} right)left( {x - 2} right)}}) Tìm (mathop {{rm{lim}}}limits_{x to {2^ + }} fleft( x right)) và (mathop {{rm{lim}}}limits_{x to {2^ - }} fleft( x right))
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Đề bài
Cho hàm số \(f\left( x \right) = \frac{2}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\)
Tìm \(\mathop {{\rm{lim}}}\limits_{x \to {2^ + }} f\left( x \right)\) và \(\mathop {{\rm{lim}}}\limits_{x \to {2^ - }} f\left( x \right)\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Áp dụng giới hạn trái, giới hạn phải để tính.
Lời giải chi tiết
Khi \(x \to {2^ + } \Rightarrow \left( {x - 1} \right)\left( {x - 2} \right) > 0\)
\( \Rightarrow \mathop {\lim }\limits_{x \to {2^ + }} \frac{2}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = + \infty \)
Khi \(x \to {2^ - } \Rightarrow \left( {x - 1} \right)\left( {x - 2} \right) < 0\)
\( \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} \frac{2}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = - \infty \)


- Bài 5.12 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.11 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.10 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.9 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.8 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Giải câu hỏi mở đầu trang 119 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 111 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 95 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 88 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 84 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 119 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 111 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 95 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 88 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 84 SGK Toán 11 tập 1 - Kết nối tri thức