Bài 5.8 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức>
Tính các giới hạn sau: a) (mathop {{rm{lim}}}limits_{x to 0} frac{{{{left( {x + 2} right)}^2} - 4}}{x}); b) (mathop {{rm{lim}}}limits_{x to 0} ) (frac{{sqrt {{x^2} + 9} - 3}}{{{x^2}}})
Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Tính các giới hạn sau:
a) \(\mathop {{\rm{lim}}}\limits_{x \to 0} \frac{{{{\left( {x + 2} \right)}^2} - 4}}{x}\);
b) \(\mathop {{\rm{lim}}}\limits_{x \to 0} \) \(\frac{{\sqrt {{x^2} + 9} - 3}}{{{x^2}}}\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
a, Phân tích đa thức thành nhân tử.
b, Nhân cả tử và mẫu với biểu thức liên hợp của tử \((\sqrt A + B).(\sqrt A - B) = A - {B^2}\).
Lời giải chi tiết
a) \(\mathop {\lim }\limits_{x \to 0} \frac{{{{\left( {x + 2} \right)}^2} - 4}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2} + 4x}}{x} = \mathop {\lim }\limits_{x \to 0} \left( {x + 4} \right) = 4\)
b) \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {{x^2} + 9} - 3}}{{{x^2}}} = \mathop {\lim }\limits_{x \to 0} \frac{1}{{\sqrt {{x^2} + 9} + 3}} = \frac{1}{6}\)
- Bài 5.9 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.10 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.11 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.12 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.13 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức