Bài 11 trang 60 SGK Hình học 10


Đề bài

Muốn đo chiều cao của tháp Chàm Por Klong Garai ở Ninh Thuận, người ta lấy hai điểm \(A\) và \(B\) trên mặt đất có khoảng cách \(AB = 12m\) cùng thẳng hàng với chân \(C\) của tháp để đặt hai giác kế. Chân của giác kế có chiều cao \(h = 1,3m\). Gọi \(D\) là đỉnh tháp và hai điểm \(A_1, \, B_1\) cùng thẳng  hàng với \(C_1\) thuộc chiều cao \(CD\) của tháp. Người ta đo được \(\widehat {D{A_1}{C_1}} = {49^0}\) và \(\widehat {D{B_1}{C_1}} = {35^0}.\) Tính chiều cao của  \(CD\) của tháp đó.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) Sử dụng các công thức lượng giác của góc nhọn trong tam giác vuông.

Lời giải chi tiết

Ta có: \(A_1B_1=AB=12m.\)

Xét \(\Delta DC_1A_1\) có: \(\cot \widehat {D{A_1}{C_1}} = \frac{{{A_1}{C_1}}}{{{C_1}D}}\)

\(\Rightarrow {A_1}{C_1} = {C_1}D.\cot \widehat {D{A_1}{C_1}}\) \(=C_1D.\cot 49^0\)

Xét \(\Delta DC_1B_1\) có: \(\cot \widehat {D{B_1}{C_1}} = \frac{{{B_1}{C_1}}}{{{C_1}D}} \)

\(\Rightarrow {B_1}{C_1} = {C_1}D.\cot \widehat {D{B_1}{C_1}}\) \(=C_1D.\cot 35^0\)

Mà \(A_1B_1=C_1B_1-C_1A_1\)\(=C_1D.\cot 35^0-C_1D.\cot 49^0\)

\(=C_1D(\cot 35^0 - \cot 49^0).\)

\(\Rightarrow C_1D=\frac{A_1B_1}{\cot 35^0 - \cot 49^0}  =\frac{12}{\cot 35^0 - \cot 49^0}\)\(\approx 21,47 \, m. \)

Vậy chiều cao \(CD\) của tháp là: 

\(DC = C{C_1} + {C_1}D = 1,3 + 21,47\) \(= 22,77m.\)

Loigiaihay.com


Bình chọn:
4.2 trên 20 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài