Lý thuyết Phương trình, bất phương trình mũ và lôgarit - Toán 11 Kết nối tri thức>
1. Phương trình mũ
Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh
1. Phương trình mũ
Phương trình mũ cơ bản có dạng \({a^x} = b\)(với \(0 < a \ne 1\)).
- Nếu b > 0 thì phương trình có nghiệm duy nhất \(x = {\log _a}b\).
- Nếu b \( \le \) 0 thì phương trình vô nghiệm.
Minh họa bằng đồ thị:
Chú ý: Phương pháp giải phương trình mũ bằng cách đưa về cùng cơ số:
Nếu \(0 < a \ne 1\) thì \({a^u} = {a^v} \Leftrightarrow u = v\).
2. Phương trình lôgarit
Phương trình lôgarit cơ bản có dạng \({\log _a}x = b\left( {0 < a \ne 1} \right)\).
Phương trình lôgarit cơ bản \({\log _a}x = b\) có nghiệm duy nhất \(x = {a^b}\).
Minh họa bằng đồ thị:
Chú ý: Phương pháp giải phương trình lôgarit bằng cách đưa về cùng cơ số:
Nếu \(u,v > 0\) và \(0 < a \ne 1\) thì \({\log _a}u = {\log _a}v \Leftrightarrow u = v\).
3. Bất phương trình mũ
Bất phương trình mũ cơ bản có dạng \({a^x} > b\) (hoặc \({a^x} \ge b,{a^x} < b,{a^x} \le b\)) với \(a > 0,a \ne 1\).
Xét bất phương trình dạng \({a^x} > b\):
- Nếu \(b \le 0\) thì tập nghiệm của bất phương trình là \(\mathbb{R}\).
- Nếu b > 0 thì bất phương trình tương đương với \({a^x} > {a^{{{\log }_a}b}}\).
Với a > 1, nghiệm của bất phương trình là \(x > {\log _a}b\).
Với \(0 < a < 1\), nghiệm của bất phương trình là \(x < {\log _a}b\).
Chú ý:
a) Các bất phương trình mũ cơ bản còn lại được giải tương tự.
b) Nếu a > 1 thì \({a^u} > {a^v} \Leftrightarrow u > v\).
Nếu 0 < a < 1 thì \({a^u} > {a^v} \Leftrightarrow u < v\).
4. Bất phương trình lôgarit
Bất phương trình lôgarit cơ bản có dạng \({\log _a}x > b\)(hoặc \({\log _a}x \ge b,{\log _a}x < b,{\log _a}x \le b\)) với \(a > 0,a \ne 1\).
Xét bất phương trình dạng \({\log _a}x > b\):
- Nếu a > 1 thì nghiệm của bất phương trình là \(x > {a^b}\).
- Nếu 0 < a < 1 thì nghiệm của bất phương trình là \(0 < x < {a^b}\).
Chú ý:
a) Các bất phương trình lôgarit cơ bản còn lại được giải tương tự.
b) Nếu a > 1 thì \({\log _a}u > {\log _a}v \Leftrightarrow u > v > 0\).
Nếu 0 < a < 1 thì \({\log _a}u > {\log _a}v \Leftrightarrow 0 < u < v\).
- Giải mục 1 trang 20, 21 SGK Toán 11 tập 2 - Kết nối tri thức
- Giải mục 2 trang 21, 22 SGK Toán 11 tập 2 - Kết nối tri thức
- Giải mục 3 trang 22, 23 SGK Toán 11 tập 2 - Kết nối tri thức
- Giải mục 4 trang 23, 24 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 6.20 trang 24 SGK Toán 11 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức