Giải mục 3 trang 22, 23 SGK Toán 11 tập 2 - Kết nối tri thức


Cho đồ thị của hàm số (y = {2^x}) và (y = 4) như Hình 6.7.

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

HĐ3

Video hướng dẫn giải

Cho đồ thị của hàm số \(y = {2^x}\) và \(y = 4\) như Hình 6.7. Tìm khoảng giá trị của x mà đồ thị hàm số \(y = {2^x}\) nằm phía trên đường thẳng y = 4 và từ đó suy ra tập nghiệm của bất phương trình \({2^x} > 4.\)

Phương pháp giải:

Quan sát đồ thị

Lời giải chi tiết:

Khoảng giá trị của x mà đồ thị hàm số \(y = {2^x}\) nằm phía trên đường thẳng y = 4 là \(\left( {2; + \infty } \right)\)

Vậy tập nghiệm của bất phương trình \({2^x} > 4\) là \(\left( {2; + \infty } \right)\)

LT3

Video hướng dẫn giải

Giải các bất phương trình sau:

a) \(0,{1^{2x - 1}} \le 0,{1^{2 - x}};\)                       

b) \({3.2^{x + 1}} \le 1.\)       

Phương pháp giải:

Xét bất phương trình dạng \({a^x} > b\)

+) a > 1, nghiệm của bất phương trình là \(x > {\log _a}b\)

+) 0 < a < 1, nghiệm của bất phương trình là \(x < {\log _a}b\)

Lời giải chi tiết:

a) \(0,{1^{2x - 1}} \le 0,{1^{2 - x}} \Leftrightarrow 2x - 1 \ge 2 - x \Leftrightarrow 3x \ge 3 \Leftrightarrow x \ge 1\)

b) \({3.2^{x + 1}} \le 1 \Leftrightarrow {2^{x + 1}} \le \frac{1}{3} \Leftrightarrow x + 1 \le {\log _2}\frac{1}{3} \Leftrightarrow x \le  - {\log _2}3 - 1 =  - {\log _2}3 - {\log _2}2 =  - {\log _2}6\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí