Lý thuyết Giải tam giác và ứng dụng thực tế


Giải tam giác là tìm số đo các cạnh và các góc chưa biết của tam giác.

Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Giải tam giác là tìm số đo các cạnh và các góc chưa biết của tam giác.

1. Định lí cosin

Trong tam giác ABC:

\(\begin{array}{l}{a^2} = {b^2} + {c^2} - 2bc\cos A\\{b^2} = {c^2} + {a^2} - 2ca\cos B\\{c^2} = {a^2} + {b^2} - 2ab\cos C\end{array}\)          

Hệ quả

\(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}};\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\)

2. Định lí sin

Trong tam giác ABC: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R.\)

(R là bán kính đường tròn ngoại tiếp tam giác ABC)

Hệ quả

\(a = 2R.\sin A;\quad b = 2R\sin B;\quad c = 2R\sin C\)

\(\sin A = \frac{a}{{2R}};\quad \sin B = \frac{b}{{2R}};\quad \sin C = \frac{c}{{2R}}.\)

 3. Các công thức tính diện tích tam giác

1) \(S = \frac{1}{2}a{h_a} = \frac{1}{2}b{h_b} = \frac{1}{2}c{h_c}\)

2) \(S = \frac{1}{2}bc\sin A = \frac{1}{2}ca\sin B = \frac{1}{2}ab\sin C\)

3) \(S = \frac{{abc}}{{4R}}\)

4) \(S = pr = \frac{{(a + b + c).r}}{2}\)

5) \(S = \sqrt {p(p - a)(p - b)(p - c)} \) (Công thức Heron)


Bình chọn:
4.4 trên 8 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí