Lý thuyết Bội và ước của một số nguyên


Cho a, b là những số nguyên, b ≠ 0. Nếu có số nguyên q sao cho a = bq thì ta nói a chia hết cho b

1. Bội và ước của một số nguyên

Cho \(a, b\) là những số nguyên, \(b ≠ 0.\) Nếu có số nguyên \(q\) sao cho \(a = bq\) thì ta nói \(a\) chia hết cho \(b \) và kí hiệu là \(a \,\,\vdots\,\, b.\)

Ta còn nói \(a\) là một bội của \(b\) và \(b\) là một ước của \(a.\)

Lưu ý: 

a) Nếu \(a = bq\) thì ta còn nói \(a\) chia cho \(b\) được thương là \(q\) và viết \(q = a : b.\)

b) Số \(0\) là bội của mọi số nguyên khác \(0.

c) Số \(0\) không phải là ước của bất kì số nguyên nào.

d) Số \(1\) và \(-1\) là ước của mọi số nguyên.

e) Nếu \(c\) là ước của cả \(a\) và \(b\) thì \(c\) được gọi là một ước chung của \(a\) và \(b.\)

2. Tính chất

a) Nếu \(a\) chia hết cho \(b\) và \(b\) chia hết cho \(c\) thì \(a\) chia hết cho \(c.\)

\(a \,\,\vdots\,\,b\)  và b \(\vdots\) c => a \(\vdots\) c.

b) Nếu \(a\) chia hết cho \(b\) thì mọi bội của \(a\) cũng chia hết cho \(b.\)

a \(\vdots\) b => am \(\vdots\) b. (\(m\in Z\))

c) Nếu \(a\) và \(b\) đều chia hết cho \(c\) thì tổng, hiệu của \(a\) và \(b\) cũng chia hết cho \(c.\)

a \(\vdots\) c và b \(\vdots\) c => (a + b) \(\vdots\) c và (a - b) \(\vdots\) c.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.2 trên 178 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 6 - Xem ngay

>> Học trực tuyến lớp 6 chương trình mới trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 6 học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài