Giải mục 3 trang 20 SGK Toán 10 tập 1 - Chân trời sáng tạo>
Dùng các kí hiệu đoạn, khoảng, nửa khoảng để viết các tập hợp sau đây:
Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Thực hành 6 trang 20 SGK Toán 10 tập 1 – Chân trời sáng tạo
Dùng các kí hiệu đoạn, khoảng, nửa khoảng để viết các tập hợp sau đây:
a) \(\left\{ {x \in \mathbb{R}|\; - 2 < x < 3} \right\}\)
b) \(\left\{ {x \in \mathbb{R}|\;1 \le x \le 10} \right\}\)
c) \(\left\{ {x \in \mathbb{R}|\; - 5 < x \le \sqrt 3 } \right\}\)
d) \(\left\{ {x \in \mathbb{R}|\;\pi \le x < 4} \right\}\)
e) \(\{ x \in \mathbb{R}|\;x < \frac{1}{4}\} \)
g) \(\{ x \in \mathbb{R}|\;x \ge \frac{\pi }{2}\} \)
Phương pháp giải - Xem chi tiết
Lời giải chi tiết
a) Khoảng \(\left( { - 2;3} \right)\)
b) Đoạn \(\left[ {1;10} \right]\)
c) Nửa khoảng \(\left( {\left. { - 5;\sqrt 3 } \right]} \right.\)
d) Nửa khoảng \(\left. {\left[ {\pi ;4} \right.} \right)\)
e) Khoảng \(\left( { - \infty ;\frac{1}{4}} \right)\)
g) Nửa khoảng \(\left[ {\left. {\frac{\pi }{2}; + \infty } \right)} \right.\)
- Giải bài 1 trang 20 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 2 trang 21 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 3 trang 21 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 4 trang 21 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 5 trang 21 SGK Toán 10 tập 1 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Xác suất của biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Không gian mẫu và biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Ba đường conic trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường tròn trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường thẳng trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Xác suất của biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Không gian mẫu và biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Ba đường conic trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường tròn trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường thẳng trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo