Toán 10, giải toán lớp 10 kết nối tri thức với cuộc sống
Bài tập cuối chương VII Toán 10 Kết nối tri thức
Giải bài 7.33 trang 58 SGK Toán 10 – Kết nối tri thức>
Trong mặt phẳng toạ độ, cho hai điểm A(-1; 0) và B(3; 1).
Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Trong mặt phẳng toạ độ, cho hai điểm A(-1;0) và B(3;1).
a) Viết phương trình đường tròn tâm A và đi qua B.
b) Viết phương trình tổng quát của đường thẳng AB.
c) Viết phương trình đường tròn tâm O và tiếp xúc với đường thẳng AB.
Phương pháp giải - Xem chi tiết
a) Đường tròn tâm A bán kính AB.
b) \(\overrightarrow {{u_{AB}}} = \overrightarrow {AB} = \left( {4;1} \right) \Rightarrow \overrightarrow {{n_{AB}}} = \left( {1; - 4} \right)\) và \(AB\) đi qua \(A\left( { - 1;0} \right)\).
c) Đường tròn tâm \(O\left( {0;0} \right)\) và bán kính \(R = d\left( {O,AB} \right)\).
Lời giải chi tiết
a) \(AB = \sqrt {{{\left( {3 + 1} \right)}^2} + {{\left( {1 - 0} \right)}^2}} = \sqrt {17} \).
Phương trình đường tròn tâm A bán kính AB là \({\left( {x + 1} \right)^2} + {y^2} = 17\).
b) Ta có \(\overrightarrow {{u_{AB}}} = \overrightarrow {AB} = \left( {4;1} \right) \Rightarrow \overrightarrow {{n_{AB}}} = \left( {1; - 4} \right)\).
Phương trình AB là \(1\left( {x + 1} \right) - 4y = 0 \Leftrightarrow x - 4y + 1 = 0\).
c) Bán kính của đường tròn tâm O, tiếp xúc với đường thẳng AB là:
\(R = d\left( {O,AB} \right) = \frac{{\left| {0 - 4.0 + 1} \right|}}{{\sqrt {{1^2} + {{\left( { - 4} \right)}^2}} }} = \frac{1}{{\sqrt {17} }}\).
Phương trình đường tròn tâm O tiếp xúc AB là \({x^2} + {y^2} = \frac{1}{{17}}\).
- Giải bài 7.34 trang 58 SGK Toán 10 – Kết nối tri thức
- Giải bài 7.35 trang 59 SGK Toán 10 – Kết nối tri thức
- Giải bài 7.36 trang 59 SGK Toán 10 – Kết nối tri thức
- Giải bài 7.37 trang 59 SGK Toán 10 – Kết nối tri thức
- Giải bài 7.32 trang 58 SGK Toán 10 – Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức




