Giải bài 4 trang 86 SGK Toán 10 tập 2 – Chân trời sáng tạo


Đề bài

Hộp thứ nhất chứa 4 viên bi xanh, 3 viên bi đỏ. Hộp thứ hai chứa 5 viên bi xanh, 2 viên bi đỏ. Các viên bi có kích thước và khối lượng như nhau. Lấy ra ngẫu nhiên từ mỗi hộp 2 viên bi. Tính xác suất của mỗi biến cố sau:

a) “Bốn viên bi lấy ra có cùng màu”

b) “Trong 4 viên bi lấy ra có đúng 1 viên bi xanh”

c) “Trong 4 viên bi lấy ra có đủ cả bi xanh và bi đỏ”

Phương pháp giải - Xem chi tiết

Bước 1: Xác định không gian mẫu

Bước 2: Xác định biến cố đối \(\overline A \)

Bước 3: Tính xác suất bằng công thức \(P(\overline A ) = \frac{{n(\overline A )}}{{n(\Omega )}} \Rightarrow P\left( A \right) = 1 - P\left( {\overline A } \right)\)

Lời giải chi tiết

Tổng số khả năng có thể xảy ra của phép thử là \(n\left( \Omega  \right) = C_7^2.C_7^2 = 441\)

a) Biến cố “Bốn viên bi lấy ra có cùng màu” xảy ra khi mỗi lần lấy từ 2 hộp đều là hai viên bi xạnh hoặc hai viên bi đỏ. Số kết quả thuận lợi cho biến cố là \(C_4^2.C_5^2 + C_3^2.C_2^2 = 63\)

Vậy xác suất của biến cố “Bốn viên bi lấy ra có cùng màu” là \(P = \frac{{63}}{{441}} = \frac{1}{7}\)

b) Số kết quả thuận lợi cho biến cố “Trong 4 viên bi lấy ra có đúng 1 viên bi xanh” là \(C_4^1.C_3^1.C_2^2 + C_3^2.C_5^1.C_2^1 = 42\)

Vậy xác suất của biến cố “Trong 4 viên bi lấy ra có đúng 1 viên bi xanh” là: \(P = \frac{{42}}{{441}} = \frac{2}{{21}}\)

c) Gọi A là biến cố “Trong 4 viên bi lấy ra có đủ cả bi xanh và bi đỏ”, ta có biến cố đối là \(\overline A \): “4 viên bi lấy ra chỉ có một màu”

\(\overline A \) xảy ra khi 2 lần lấy ra đều được các viên bi cùng màu xanh hoặc cùng màu đỏ

Từ câu a) ta có xác suất của biến cố \(\overline A \) là \(P\left( {\overline A } \right) = \frac{1}{7}\)

Suy ra, xác suất của biến cố A là \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{1}{7} = \frac{6}{7}\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.