Đề kiểm tra 15 phút - Đề số 6 - Bài 13 - Chương 2 - Đại số 6


Giải Đề kiểm tra 15 phút - Đề số 6 - Bài 13 - Chương 2 - Đại số 6

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1. Tìm \(x ∈\mathbb Z\), biết: \(x^2 + 2x + 2\) chia hết cho \(x + 2\)

Bài 2. Cho \(x + y + xy + 1 = 0\). Tìm \(x, y ∈\mathbb Z\)

LG bài 1

Phương pháp giải:

 Nhóm: \(x^2 + 2x + 2 = (x^2+ 2x ) + 2 \)\(\,= x(x + 2) + 2\)

Lời giải chi tiết:

Ta có: \(x^2 + 2x + 2 = (x^2+ 2x ) + 2 \)\(\,= x(x + 2) + 2\)

Để  \(x^2 + 2x + 2\)  chia hết cho \(x + 2\) thì \(x + 2\) phải là ước của 2

Ta có tập hợp các ước của 2 là \(\{±1; ±2\}\)

Vậy \(x + 2 = 1; x + 2 = -1; x + 2 = 2; \)\(\,x + 2 = -2\)

\(⇒ x = -1; x = -3; x = 0\) và \(x = -4\).

LG bài 2

Phương pháp giải:

Nhóm: \(x + y + xy + 1 = 0 \)\(⇒ (x + y)(x + 1) = 0\)

Rồi áp dụng: 

\(A.B = 0 \Leftrightarrow A = 0\) hoặc \(B = 0\)

Lời giải chi tiết:

Ta có: \(x + y + xy + 1 = 0 \)\(⇒ (x + y)(x + 1) = 0\)

\(⇒ y + 1 = 0\) hoặc \(x + 1 = 0\).

Nếu \(y + 1 = 0 ⇒ y = -1; x ∈ \mathbb Z\) (x là một số nguyên tùy ý)

Nếu \(x + 1 = 0 ⇒ y = -1;  y ∈\mathbb Z\) (y là một số nguyên tùy ý)

Loigiaihay.com


Bình chọn:
3.8 trên 6 phiếu

>> Xem thêm

Tham Gia Group Dành Cho 2K13 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí