Bài 11 trang 71 SGK Đại số 10


Giải bài 11 trang 71 SGK Đại số 10. Giải các phương trình

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình

LG a

\(|4x-9| = 3 -2x\)

Phương pháp giải:

Dạng 1: \(\left| {f\left( x \right)} \right| = g\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}g\left( x \right) \ge  0\\{f^2}\left( x \right) = {g^2}\left( x \right)\end{array} \right..\)

Lời giải chi tiết:

Ta có: \(3 - 2x ≥ 0 ⇔ x ≤{3 \over 2}\)

Bình phương hai vế ta được:

\((4x – 9)^2= (3-2x)^2\)

\( \Leftrightarrow {(4x - 9)^2} - {(3 - 2x)^2} = 0\)

\(⇔ (4x – 9 + 3 -2x)(4x – 9 – 3 + 2x) = 0\)

\(\eqalign{
& \Leftrightarrow (2x - 6)(6x - 12) = 0 \cr 
& \Leftrightarrow \left[ \begin{array}{l}2x - 6 = 0\\6x - 12 = 0\end{array} \right.\cr &\Leftrightarrow \left[ \matrix{x = 3\text{ ( loại )} \hfill \cr x = 2 \text{ ( loại )}\hfill \cr} \right. \cr} \)

Vậy phương trình vô nghiệm.

Cách khác:

|4x – 9| = 3 – 2x (1)

+ Xét 4x – 9 ≥ 0 ⇔ x ≥ 9/4, khi đó |4x – 9| = 4x – 9

(1) trở thành 4x – 9 = 3 – 2x ⇔ 6x = 12 ⇔ x = 2 < 9/4 (không thỏa mãn).

+ Xét 4x – 9 < 0 ⇔ x < 9/4, khi đó |4x – 9| = 9 – 4x

(1) trở thành 9 – 4x = 3 – 2x ⇔ 2x = 6 ⇔ x = 3 > 9/4 (không thỏa mãn).

Vậy phương trình vô nghiệm.

LG b

\(|2x+1| = |3x+5|\)

Phương pháp giải:

Dạng 2: \(\left| {f\left( x \right)} \right| = \left| {g\left( x \right)} \right| \Leftrightarrow \left[ \begin{array}{l}f\left( x \right) = g\left( x \right)\\f\left( x \right) = - g\left( x \right)\end{array} \right..\)

Lời giải chi tiết:

Ta có:

\(Pt\Leftrightarrow \left[ \matrix{
2x + 1 = 3x + 5 \hfill \cr 
2x + 1 = - 3x - 5 \hfill \cr} \right.\\ \Leftrightarrow \left[ \matrix{
x = - 4 \hfill \cr 
5x = - 6 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = - 4 \hfill \cr 
x = -\frac{6}{5} \hfill \cr} \right.\)

Vậy phương trình có tập nghiệm: \(S = \left\{ { - 4;\; - \frac{6}{5}} \right\}.\)

Loigiaihay.com


Bình chọn:
2.9 trên 8 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

>> Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài