Bài 9 trang 86 SGK Toán 11 tập 2 – Chân trời sáng tạo>
Cho hình vuông \(ABCD\) và tam giác đều \(SAB\) cạnh \(a\) nằm trong hai mặt phẳng vuông góc với nhau. Gọi \(M,N\) lần lượt là trung điểm của \(AB\) và \(AD\).
Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Cho hình vuông \(ABCD\) và tam giác đều \(SAB\) cạnh \(a\) nằm trong hai mặt phẳng vuông góc với nhau. Gọi \(M,N\) lần lượt là trung điểm của \(AB\) và \(AD\).
a) Chứng minh rằng \(\left( {SMD} \right) \bot \left( {SNC} \right)\).
b) Tính khoảng cách từ \(M\) đến mặt phẳng \(\left( {SNC} \right)\).
Phương pháp giải - Xem chi tiết
‒ Cách chứng minh hai mặt phẳng vuông góc: chứng minh mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng.
‒ Cách tính khoảng cách từ một điểm đến một mặt phẳng: Tính khoảng cách từ điểm đó đến hình chiếu của nó lên mặt phẳng.
Lời giải chi tiết
Gọi \(I = CN \cap DM\)
\(\Delta SAB\) đều \( \Rightarrow SM \bot AB\)
Mà \(\left( {SAB} \right) \bot \left( {ABCD} \right),\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\)
\( \Rightarrow SM \bot \left( {ABCD} \right) \Rightarrow SM \bot CN\)
\(\Delta A{\rm{D}}M = \Delta DCN\left( {c.g.c} \right) \Rightarrow \widehat {AM{\rm{D}}} = \widehat {CN{\rm{D}}}\)
Mà \(\widehat {AM{\rm{D}}} + \widehat {A{\rm{D}}M} = {90^ \circ }\)
\(\widehat {CN{\rm{D}}} + \widehat {A{\rm{D}}M} = {90^ \circ } \Rightarrow \widehat {NI{\rm{D}}} = {180^ \circ } - \left( {\widehat {CN{\rm{D}}} + \widehat {A{\rm{D}}M}} \right) = {90^ \circ } \Rightarrow CN \bot DM\)
\(\left. \begin{array}{l}\left. \begin{array}{l}SM \bot CN\\CN \bot DM\end{array} \right\} \Rightarrow CN \bot \left( {SM{\rm{D}}} \right)\\CN \subset \left( {SNC} \right)\end{array} \right\} \Rightarrow \left( {SNC} \right) \bot \left( {SM{\rm{D}}} \right)\)
b) Kẻ \(MH \bot SI\left( {H \in SI} \right)\)
\(CN \bot \left( {SM{\rm{D}}} \right) \Rightarrow CN \bot MH\)
\( \Rightarrow MH \bot \left( {SNC} \right) \Rightarrow d\left( {M,\left( {SNC} \right)} \right) = MH\)
\(\Delta C{\rm{D}}N\) vuông tại \(D\) có đường cao \(DI\)
\(DN = \frac{1}{2}A{\rm{D}} = \frac{a}{2},CN = \sqrt {C{{\rm{D}}^2} + D{N^2}} = \frac{{a\sqrt 5 }}{2},DI = \frac{{C{\rm{D}}.DN}}{{CN}} = \frac{{a\sqrt 5 }}{5}\)
\(DM = CN = \frac{{a\sqrt 5 }}{2} \Rightarrow MI = DM - DI = \frac{{3a\sqrt 5 }}{{10}}\)
\(\Delta SAB\) đều \( \Rightarrow SM = \frac{{AB\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2}\)
\(\Delta SMI\) vuông tại \(M\) có đường cao \(MH\)
\( \Rightarrow MH = \frac{{SM.MI}}{{\sqrt {S{M^2} + M{I^2}} }} = \frac{{3a\sqrt 2 }}{8}\)
Vậy \(d\left( {M,\left( {SNC} \right)} \right) = \frac{{3a\sqrt 2 }}{8}\)
- Bài 10 trang 87 SGK Toán 11 tập 2 – Chân trời sáng tạo
- Bài 11 trang 87 SGK Toán 11 tập 2 – Chân trời sáng tạo
- Bài 12 trang 87 SGK Toán 11 tập 2 – Chân trời sáng tạo
- Bài 13 trang 87 SGK Toán 11 tập 2 – Chân trời sáng tạo
- Bài 8 trang 86 SGK Toán 11 tập 2 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố giao và quy tắc nhân xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo