Bài 13 trang 87 SGK Toán 11 tập 2 – Chân trời sáng tạo>
Cho hình hộp \(ABCD.A'B'C'D'\) có cạnh bên \(AA' = a\), đáy \(ABCD\) là hình thoi có \(AB = BD = a\).
Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Cho hình hộp \(ABCD.A'B'C'D'\) có cạnh bên \(AA' = a\), đáy \(ABCD\) là hình thoi có \(AB = BD = a\). Hình chiếu vuông góc của \(A'\) lên mặt đáy trùng với điểm \(O\) là giao điểm hai đường chéo của đáy. Tính thể tích của khối hộp.
Phương pháp giải - Xem chi tiết
‒ Sử dụng công thức tính thể tích lăng trụ: \(V = Sh\).
Lời giải chi tiết
\(AB = B{\rm{D}} = A{\rm{D}} = a \Rightarrow \Delta ABD\) đều\( \Rightarrow \widehat {BA{\rm{D}}} = {60^ \circ }\)
\(O\) là trung điểm của \(BD\)\( \Rightarrow AO = \frac{{AB\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2}\)
\(\begin{array}{l}AA' \bot \left( {ABCD} \right) \Rightarrow AA' \bot AO\\ \Rightarrow A'O = \sqrt {AA{'^2} - A{O^2}} = \frac{a}{2}\end{array}\)
\({S_{ABC{\rm{D}}}} = AB.A{\rm{D}}.\sin \widehat {BA{\rm{D}}} = \frac{{{a^2}\sqrt 3 }}{2}\)
\({V_{ABCD.A'B'C'D'}} = {S_{ABC{\rm{D}}}}.A'O = \frac{{{a^3}\sqrt 3 }}{4}\)
- Bài 12 trang 87 SGK Toán 11 tập 2 – Chân trời sáng tạo
- Bài 11 trang 87 SGK Toán 11 tập 2 – Chân trời sáng tạo
- Bài 10 trang 87 SGK Toán 11 tập 2 – Chân trời sáng tạo
- Bài 9 trang 86 SGK Toán 11 tập 2 – Chân trời sáng tạo
- Bài 8 trang 86 SGK Toán 11 tập 2 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố giao và quy tắc nhân xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo