Bài 7 trang 86 SGK Toán 11 tập 2 – Chân trời sáng tạo>
Nếu hình hộp chữ nhật có ba kích thước là \(3;4;5\) thì độ dài đường chéo của nó là:
Đề bài
Nếu hình hộp chữ nhật có ba kích thước là \(3;4;5\) thì độ dài đường chéo của nó là:
A. \(5\sqrt 2 \).
B. 50.
C. \(2\sqrt 5 \).
D. 12.
Phương pháp giải - Xem chi tiết
Sử dụng định lí Pitago.
Lời giải chi tiết
Giả sử hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = 3,BC = 4,AA' = 5\)
\(\begin{array}{l}AC = \sqrt {A{B^2} + B{C^2}} = 5\\A'C = \sqrt {AA{'^2} + A{C^2}} = 5\sqrt 2 \end{array}\)
Chọn A.
- Bài 8 trang 86 SGK Toán 11 tập 2 – Chân trời sáng tạo
- Bài 9 trang 86 SGK Toán 11 tập 2 – Chân trời sáng tạo
- Bài 10 trang 87 SGK Toán 11 tập 2 – Chân trời sáng tạo
- Bài 11 trang 87 SGK Toán 11 tập 2 – Chân trời sáng tạo
- Bài 12 trang 87 SGK Toán 11 tập 2 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố giao và quy tắc nhân xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo