Bài 2 trang 86 SGK Toán 11 tập 2 – Chân trời sáng tạo


Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(b\), \(SA\) vuông góc với mặt đáy, \(SC = 2b\sqrt 2 \).

Đề bài

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(b\), \(SA\) vuông góc với mặt đáy, \(SC = 2b\sqrt 2 \). Số đo góc giữa cạnh bên \(SC\) và mặt đáy là

A. \({60^ \circ }\).

B. \({30^ \circ }\).

C. \({45^ \circ }\).

D. \({50^ \circ }\).

Phương pháp giải - Xem chi tiết

Cách tính góc giữa đường thẳng và mặt phẳng: Tính góc giữa đường thẳng đó và hình chiếu của nó lên mặt phẳng.

Lời giải chi tiết

\(SA \bot \left( {ABCD} \right) \Rightarrow \left( {SC,\left( {ABCD} \right)} \right) = \left( {SC,AC} \right) = \widehat {SCA}\)

\(ABCD\) là hình vuông \( \Rightarrow AC = \sqrt {A{B^2} + B{C^2}}  = b\sqrt 2 \)

\(\cos \widehat {SCA} = \frac{{AC}}{{SC}} = \frac{1}{2} \Rightarrow \widehat {SCA} = {60^ \circ }\)

Vậy \(\left( {SC,\left( {ABCD} \right)} \right) = {60^ \circ }\)

Chọn A.


Bình chọn:
3.6 trên 5 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí