Bài 8 trang 81 SGK Hình học 10

Bình chọn:
3.6 trên 32 phiếu

Giải bài 8 trang 81 SGK Hình học 10. Tìm khoảng cách từ điểm đến đường thẳng

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tìm khoảng cách từ điểm đến đường thẳng trong các trường hợp sau:

LG a

\(A(3; 5), \)    \(∆ : 4x + 3y + 1 = 0\);

Phương pháp giải:

Áp dụng công thức tính khoảng cách từ điểm \(M(x_0; \, y_0)\) đến đường thẳng \(\Delta: \, ax+by+c=0\) là:  \( d(M, \,∆) = \frac{|ax_{0}+by_{0}+c|}{\sqrt{a^{2}+b^{2}}}\)

Giải chi tiết:

\( d(M_0,∆) =\frac{|4.3+3.5+1|}{\sqrt{4^{2}+3^{2}}}= \frac{28}{5}\) 

LG b

 \(B(1; -2),\)  \( d: 3x - 4y - 26 = 0\);

Phương pháp giải:

Áp dụng công thức tính khoảng cách từ điểm \(M(x_0; \, y_0)\) đến đường thẳng \(\Delta: \, ax+by+c=0\) là:  \( d(M, \,∆) = \frac{|ax_{0}+by_{0}+c|}{\sqrt{a^{2}+b^{2}}}\)

Giải chi tiết:

\( d(B,d) =\frac{|3.1-4.(-2)-26|}{\sqrt{3^{2}+(-4)^{2}}} = \frac{-15}{5} = \frac{15}{5}\)\( = 3\)

LG c

\(C(1; 2),\)   \( m: 3x + 4y - 11 = 0\);

Phương pháp giải:

Áp dụng công thức tính khoảng cách từ điểm \(M(x_0; \, y_0)\) đến đường thẳng \(\Delta: \, ax+by+c=0\) là:  \( d(M, \,∆) = \frac{|ax_{0}+by_{0}+c|}{\sqrt{a^{2}+b^{2}}}\)

Giải chi tiết:

Ta có: \(3.1+4.2-11=0\) do đó điểm \(C\) nằm trên đường thẳng \(m\) \(\Rightarrow  d(C, \,m) =0.\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

>>Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng