Bài 5 trang 80 SGK Hình học 10


Xét vị trí tương đối của các cặp đường thẳng sau đây:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Xét vị trí tương đối của các cặp đường thẳng sau đây:

LG a

\(d_1: 4x - 10y + 1 = 0 \);

\(d_2 : x + y + 2 = 0\)

Phương pháp giải:

Cho hai đường thẳng: \({d_1}:\;\;ax + by + c = 0,\) \({d_2}:\;\;a'x + b'y + c' = 0.\) Khi đó: 

+) \({d_1}  \cap  {d_2}:\;\;\dfrac{a}{{a'}} \ne \dfrac{b}{{b'}}.\)

+) \({d_1}//{d_2}:\;\;\dfrac{a}{{a'}} = \dfrac{b}{{b'}} \ne \dfrac{c}{{c'}}.\)

+) \({d_1} \equiv {d_2}:\;\;\dfrac{a}{{a'}} = \dfrac{b}{{b'}} = \dfrac{c}{{c'}}.\)

Lời giải chi tiết:

 Xét hệ \(\left\{\begin{matrix} 4x-10y + 1= 0& \\ x + y + 2 = 0& \end{matrix}\right.\)

Ta có: \(\dfrac{4}{1} \ne \dfrac{{ - 10}}{1} \Rightarrow {d_1} \cap {d_2}.\)

Vậy \(d_1\) và \(d_2\) cắt nhau.

Chú ý:

Có thể bấm máy tính giải hệ trên ra nghiệm \(\left( {x;y} \right) = \left( { - \dfrac{3}{2}; - \dfrac{1}{2}} \right)\) suy ra hai đường thẳng cắt nhau.

Khi giải hệ cần chuyển vế như sau rồi mới bấm máy: 

\(\left\{ \begin{array}{l}
4x - 10y = - 1\\
x + y = - 2
\end{array} \right.\)

Bấm MODE 5 1 rồi nhập lần lượt các hệ số:

4   -10   -1

1     1    -2

Sau đó sẽ ra nghiệm \(\left( {x;y} \right) = \left( { - \frac{3}{2}; - \frac{1}{2}} \right)\).

LG b

\(d_1  :12x - 6y + 10 = 0  \);

\(d_2:\left\{\begin{matrix} x= 5+t& \\ y= 3+2t& \end{matrix}\right.\)

Phương pháp giải:

Viết lại \(d_2\) về dạng tổng quát và nhận xét các bộ tỉ số.

Lời giải chi tiết:

Viết \(d_2:\left\{\begin{matrix} x= 5+t& \\ y= 3+2t& \end{matrix}\right.\) dưới dạng tổng quát.

\(\begin{array}{l}
{d_2}:\left\{ \begin{array}{l}
x = 5 + t\\
y = 3 + 2t
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
2x = 10 + 2t\\
y = 3 + 2t
\end{array} \right.\\
\Rightarrow 2x - y = 7\\
\Leftrightarrow 2x - y - 7 = 0
\end{array}\)

Do đó \(d_2: 2x - y - 7 = 0.\)

Ta có: \(\dfrac{{12}}{2} = \dfrac{{ - 6}}{{ - 1}} \ne \dfrac{{10}}{{ - 7}} \Rightarrow {d_1}//{d_2}.\)

Vậy \(d_1// d_2\).

Cách khác:

Cách 1:

Giải hệ phương trình:

\(\begin{array}{l}
\left\{ \begin{array}{l}
x = 5 + t\\
y = 3 + 2t\\
12x - 6y + 10 = 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x = 5 + t\\
y = 3 + 2t\\
12\left( {5 + t} \right) - 6\left( {3 + 2t} \right) + 10 = 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x = 5 + t\\
y = 3 + 2t\\
12t + 60 - 18 - 12t + 10 = 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x = 5 + t\\
y = 3 + 2t\\
52 = 0\left( {VN} \right)
\end{array} \right.
\end{array}\)

Hệ trên vô nghiệm nên hai đường thẳng song song.

Cách 2:

\({d_1}\) nhận \(\overrightarrow {{n_1}}  = \left( {12; - 6} \right)\) làm VTPT.

\({d_2}\) nhận \(\overrightarrow {{u_2}}  = \left( {1;2} \right)\) làm VTCP nên nhận \(\overrightarrow {{n_2}}  = \left( {2; - 1} \right)\) làm VTPT.

Dễ thấy \(\overrightarrow {{n_1}}  = 6\overrightarrow {{n_2}} \) nên \({d_1},{d_2}\) song song hoặc trùng nhau.

Lấy điểm \(M\left( {5;3} \right) \in {d_2}\) thay vào \({d_1}\) ta được:

\(12.5 - 6.3 + 10 = 52 \ne 0\) nên \(M \notin {d_1}\).

Vậy \({d_1}//{d_2}\).

LG c

\(d_1:8x + 10y - 12 = 0  \);

\( d_2 :  \left\{\begin{matrix} x= -6+5t& \\ y= 6-4t& \end{matrix}\right.\)

Phương pháp giải:

Viết \(d_2\) dưới dạng tổng quát và nhận xét các bộ số tỉ lệ.

Lời giải chi tiết:

\(d_1:8x + 10y - 12 = 0  \)

Viết \( d_2  :  \left\{\begin{matrix} x= -6+5t& \\ y= 6-4t& \end{matrix}\right.\) dưới dạng tổng quát:

\(\begin{array}{l}
{d_2}:\left\{ \begin{array}{l}
x = - 6 + 5t\\
y = 6 - 4t
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
4x = - 24 + 20t\\
5y = 30 - 20t
\end{array} \right.\\
\Rightarrow 4x + 5y = 6\\
\Leftrightarrow 4x + 5y - 6 = 0
\end{array}\)

Do đó \(d_2: 4x + 5y - 6 = 0\)  

Ta có: \(\dfrac{8}{4} = \dfrac{{10}}{5} = \dfrac{{ - 12}}{{ - 6}}\left( { = 2} \right)\) \( \Rightarrow {d_1} \equiv {d_2}.\)

Vậy \(d_1\) trùng \(d_2\).

Cách khác:

Cách 1: Xét hệ phương trình:

\(\begin{array}{l}
\left\{ \begin{array}{l}
8x + 10y - 12 = 0\\
x = - 6 + 5t\\
y = 6 - 4t
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x = - 6 + 5t\\
y = 6 - 4t\\
8\left( { - 6 + 5t} \right) + 10\left( {6 - 4t} \right) - 12 = 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x = - 6 + 5t\\
y = 6 - 4t\\
- 48 + 40t + 60 - 40t - 12 = 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x = - 6 + 5t\\
y = 6 - 4t\\
0 = 0\left( {dung} \right)
\end{array} \right.
\end{array}\)

Do đó hệ có vô số nghiệm hay \(d_1\) trùng \(d_2\).

Cách 2: 

\({d_1}\) nhận \(\overrightarrow {{n_1}}  = \left( {8;10} \right)\) làm VTPT.

\({d_2}\) nhận \(\overrightarrow {{u_2}}  = \left( {5; - 4} \right)\) làm VTCP nên nhận \(\overrightarrow {{n_2}}  = \left( {4;5} \right)\) làm VTPT.

Dễ thất \(\overrightarrow {{n_1}}  = 2\overrightarrow {{n_2}} \) nên \({d_1},{d_2}\) song song hoặc trùng nhau.

Lấy điểm \(M\left( { - 6;6} \right) \in {d_2}\), thay vào \({d_1}\) được:

\(8.\left( { - 6} \right) + 10.6 - 12 = 0\) nên \(M \in {d_1}\).

Vậy \({d_1} \equiv {d_2}\).

Loigiaihay.com


Bình chọn:
4.5 trên 39 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!