Tuyensinh247.com giảm giá 30% tất cả các khóa học các lớp
Xem ngay

Chỉ còn: 1 ngày

Bài 52 trang 128 SGK Toán 7 tập 1

Bình chọn:
4.2 trên 212 phiếu

Giải bài 52 trang 128 SGK Toán 7 tập 1. Cho góc xOy có số đo, điểm A thuộc tia phân giác của góc đó. Kẻ AB vuông góc với Ox(B thuộc Ox), kẻ AC vuông góc với Oy(C thuộc Oy).

Đề bài

Cho góc xOy có số đo \(120^0\), điểm A thuộc tia phân giác của góc đó. Kẻ AB vuông góc với Ox (B thuộc Ox), kẻ AC vuông góc với Oy (C thuộc Oy). Tam giác ABC là tam giác gì ? Vì sao?

Lời giải chi tiết

Tam giác ACO vuông tại C

Tam giác ABO vuông tại B

Xét hai tam giác vuông ACO và ABO có:

+) \(\widehat{O_{1}}=\widehat{O_{2}}\) (Vì OA là tia phân giác góc xOy)

+) AO chung

Suy ra \(∆ACO=∆ABO\) (cạnh huyền-góc nhọn)

Suy ra \(AC=AB\) (hai cạnh tương ứng)

\(\widehat {{A_1}} = \widehat {{A_2}}\) (hai góc tương ứng)

\(\widehat {{O_1}} = {1 \over 2}\widehat {xOy} = {1 \over 2}{.120^0} = {60^0}\)  (Vì OA là tia phân giác góc xOy)

Áp dụng định lí tổng ba góc trong một tam giác vào \(\Delta OBA\) ta có:

\(\eqalign{
& \widehat {{O_1}} + \widehat B + \widehat {{A_1}} = {180^0} \cr
& \Rightarrow \widehat {{A_1}} = {180^0} - \widehat {{O_1}} - \widehat B \cr&\;\;\;\;\;\;\;\;\;\;= {180^0} - {60^0} - {90^0} = {30^0} \cr} \)

Do đó: \(\widehat {{A_1}} = \widehat {{A_2}} = {30^0}\)

Hay \(\widehat {BAC} = \widehat {{A_1}} + \widehat {{A_2}} = {60^0}\)

Vây \(∆ABC\) có \(AC=AB\) và \(\widehat {BAC}= {60^0}\) nên là tam giác đều

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 7 - Xem ngay

>>Học trực tuyến lớp 7, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Sử cùng các thầy cô giáo dạy giỏi, nổi tiếng.

Các bài liên quan