Bài 108 trang 42 SGK Toán 6 tập 1

Bình chọn:
4.4 trên 188 phiếu

Giải bài 108 trang 42 SGK Toán 6 tập 1. Một số có tổng các chữ số chia cho 9

Đề bài

Một số có tổng các chữ số chia cho \(9\) (cho \(3\)) dư \(m\) thì số đó chia cho \(9\) ( cho \(3\)) cũng dư \(m\).

Ví dụ: Số \(1543\) có tổng các chữ số bằng: \(1 + 5 + 4 + 3 = 13\). Số \(13\) chia cho \(9\) dư \(4\) chia cho \(3\) dư \(1\). Do đó số \(1543\) chia cho \(9\) dư \(4\), chia cho \(3\) dư \(1\).

Tìm số dư khi chia mỗi số sau cho \(9\), cho \(3:\)

\(1546; 1526; 2468; 10^{11}\)

Phương pháp giải - Xem chi tiết

Tính tổng các chữ số của mỗi số rồi tìm số dư khi chia tổng các chữ số đó cho \(3\) (hoặc cho \(9\)) từ đó suy ra số dư của số ban đầu.

Lời giải chi tiết

Chỉ cần tìm dư trong phép chia tổng các chữ số cho \(9\), cho \(3\).

+) Vì \(1 + 5 + 4 + 6 = 16\) chia cho \(9\) dư \(7\) và chia cho \(3\) dư \(1\) nên \(1546\) chia cho \(9\) dư \(7\), chia cho \(3\) dư \(1\); 

+) Vì \(1 + 5 + 2 + 7 = 15\) chia cho \(9\) dư \(6\), chia hết cho \(3\) nên \(1527\) chia cho \(9\) dư \(6\) chia hết cho \(3\);

+ Vì \(2+4+6+8=20\) chia cho 9 dư 2 và chia cho 3 dư 2 nên \(2468\) chia cho \(9\) dư \(2\), chia cho \(3\) dư \(2\);

+) \(10^{11}=100\,000\,000 \,000\) có tổng các chữ số là \(1\) nên chia cho \(9\) dư \(1\), chia cho \(3\) dư \(1\).

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 6 - Xem ngay

>>Học trực tuyến lớp 6 trên Tuyensinh247.com mọi lúc, mọi nơi với đầy đủ các môn: Toán, Văn, Anh, Lý, Sử, Sinh cùng các thầy cô nổi tiếng, dạy hay dễ hiểu