Lý thuyết tính chất của dãy tỉ số bằng nhau


Số tỉ lệ: khi nói các số a, b, c tỉ lệ với các số 2,3 5 tức là ta có

1. Tính chất dãy tỉ số bằng nhau

Ta có: \(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{{a + c}}{{b + d}} = \dfrac{{a - c}}{{b - d}}\)

Từ dãy tỉ số bằng nhau \(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f}\) ta suy ra: 

\(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} = \dfrac{{a + c + e}}{{b + d + f}} = \dfrac{{a - c + e}}{{b - d + f}}\)

Ví dụ:

\(\frac{2}{3} = \frac{4}{6} = \frac{{2 + 4}}{{3 + 6}} = \frac{6}{9}\)

2. Chú ý

Khi nói các số \(a, b, c\) tỉ lệ với các số \(2;3 ;5\) tức là ta có: \(\dfrac{a}{2} = \dfrac{b}{3} = \dfrac{c}{5}\)

Dạng toán cơ bản

Tìm hai số \(x;y\) biết tổng (hoặc hiệu) và tỉ số của chúng.

Phương pháp: 

* Để tìm hai số \(x;y\) khi biết tổng \(x + y = s\) (hoặc hiệu \(x-y=t\)) và tỉ số \(\dfrac{x}{y} = \dfrac{a}{b}\) ta làm như sau

Ta có \(\dfrac{x}{y} = \dfrac{a}{b} \Rightarrow \dfrac{x}{a} = \dfrac{y}{b}\)

Áp dụng dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{{x + y}}{{a + b}} = \dfrac{x-y}{{a - b}}\)

Từ đó ta tìm được \(x\) và \(y\)

Ví dụ: Tìm hai số \(x;y\) biết \(\frac{x}{3} = \frac{y}{5}\) và \(x + y =  - 32\)

Áp dụng dãy tỉ số bằng nhau ta có:

\(\frac{x}{3} = \frac{y}{5} = \frac{{x + y}}{{3 + 5}} = \frac{{ - 32}}{8} =  - 4\)

Do đó \(\frac{x}{3} =  - 4 \Rightarrow x =  - 12\)  và \(\frac{y}{5} =  - 4 \Rightarrow y =  - 20.\)

Vậy \(x =  - 12;y =  - 20.\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.4 trên 130 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 7 - Xem ngay

>> Học trực tuyến lớp 7 trên Tuyensinh247.com mọi lúc, mọi nơi với đầy đủ các môn: Toán, Văn, Anh, Lý, Sử, Sinh cùng các thầy cô giáo dạy giỏi, nổi tiếng.


Gửi bài