Lý thuyết Phương trình quy về phương trình bậc hai - SGK Toán 10 Chân trời sáng tạo>
1. Phương trình dạng \(\sqrt {a{x^2} + bx + c} = \sqrt {d{x^2} + ex + f} \)
Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
A. Lý thuyết
1. Phương trình dạng \(\sqrt {a{x^2} + bx + c} = \sqrt {d{x^2} + ex + f} \)
Để giải phương trình \(\sqrt {a{x^2} + bx + c} = \sqrt {d{x^2} + ex + f} \), ta thực hiện như sau: Bước 1: Bình phương hai vế của phương trình để được phương trình \(a{x^2} + bx + c = d{x^2} + ex + f\). Bước 2: Giải phương trình vừa nhận được ở B1. Bước 3: Thử lại các giá trị x tìm được ở B2 có thỏa mãn phương trình đã cho không và kết luận nghiệm. |
2. Phương trình dạng \(\sqrt {a{x^2} + bx + c} = dx + e\)
Để giải phương trình \(\sqrt {a{x^2} + bx + c} = dx + e\), ta thực hiện như sau: Bước 1: Bình phương hai vế của phương trình để được phương trình \(a{x^2} + bx + c = {(dx + e)^2}\). Bước 2: Giải phương trình vừa nhận được ở B1. Bước 3: Thử lại các giá trị x tìm được ở B2 có thỏa mãn phương trình đã cho không và kết luận nghiệm. |
B. Bài tập
Bài 1: Giải phương trình \(\sqrt {2{x^2} - 4x - 2} = \sqrt {{x^2} - x - 2} \).
Giải:
Bình phương hai vế của phương trình, ta được:
\(2{x^2} - 4 - 2 = {x^2} - x - 2\)
\( \Rightarrow {x^2} - 3x = 0\)
\( \Rightarrow \) x = 0 hoặc x = 3.
Thay lần lượt hai giá trị này của x vào phương trình đã cho, ta chỉ thấy có x = 3 thỏa mãn.
Vậy nghiệm của phương trình đã cho là x = 3.
Bài 2: Giải phương trình \(\sqrt {2{x^2} - 5x - 9} = x - 1\).
Giải:
Bình phương hai vế của phương trình, ta được
\(2{x^2} - 5x - 9 = {(x - 1)^2}\)
\( \Rightarrow 2{x^2} - 5x - 9 = {x^2} - 2x + 1\)
\( \Rightarrow {x^2} - 3x - 10 = 0\)
\( \Rightarrow \) x = -2 hoặc x = 5.
Thay lần lượt hai giá trị này của x vào phương trình đã cho, ta chỉ thấy có x = 5 thỏa mãn.
Vậy nghiệm của phương trình đã cho là x = 5.
- Giải mục 1 trang 15, 16 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải mục 2 trang 16, 17 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải bài 1 trang 17 SGK Toán 10 tập 2 – Chân trời sáng tạo
- Giải bài 2 trang 17 SGK Toán 10 tập 2 – Chân trời sáng tạo
- Giải bài 3 trang 17 SGK Toán 10 tập 2 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Nhị thức Newton - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Quy tắc cộng và quy tắc nhân - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Phương trình quy về phương trình bậc hai - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Giải bất phương trình bậc hai một ẩn - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Nhị thức Newton - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Quy tắc cộng và quy tắc nhân - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Phương trình quy về phương trình bậc hai - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Giải bất phương trình bậc hai một ẩn - SGK Toán 10 Chân trời sáng tạo