Biểu thức nào sau đây không phải là đa thức
A. \(\sqrt 2 {x^2}y\)
B. \( - \dfrac{1}{2}x{y^2} + 1\)
C. \(\dfrac{1}{{2z}}x + y\)
D. 0
Đơn thức nào sau đây đồng dạng với đơn thức \( - 2{x^3}y\)?
A. \(\dfrac{1}{3}{x^2}yx\)
B. \(2{x^3}yz\)
C. \( - 2{x^3}z\)
D. \(3x{y^3}\)
Biểu thức nào sau đây không phải là đa thức bậc 4?
A. \(2{x^2}yz\)
B. \({x^4} - \dfrac{1}{3}{x^3}{y^2}\)
C. \({x^2}y + xyzt\)
D. \({x^4} - {2^5}\)
Biểu thức nào sau đây không phải là phân thức?
A. \({x^2}y + y\)
B. \(\dfrac{{3xy}}{{\sqrt 2 z}}\)
C. \(\dfrac{{\sqrt x }}{2}\)
D. \(\dfrac{{a + b}}{{a - b}}\)
Kết quả của phép nhân \((x + y - 1)(x + y + 1)\) là:
A. \({x^2} - 2xy + {y^2} + 1\)
B. \({x^2} + 2xy + {y^2} - 1\)
C. \({x^2} - 2xy + {y^2} - 1\)
D. \({x^2} + 2xy + {y^2} + 1\)
Kết quả của phép nhân \((2x + 1)(4{x^2} - 2x + 1)\) là:
A. \(8{x^3} - 1\)
B. \(4{x^3} + 1\)
C. \(8{x^3} + 1\)
D. \(2{x^2} + 1\)
Khi phân tích đa thức \(P = {x^4} - 4{x^2}\) thành nhân tử thì được:
A. \(P = {x^2}(x - 2)(x + 2)\)
B. \(P = x(x - 2)(x + 2)\)
C. \(P = {x^2}(x - 4)(x + 4)\)
D. \(P = x(x - 4)(x + 2)\)
Kết quả của phép trừ \(\dfrac{2}{{{{(x + 1)}^2}}} - \dfrac{1}{{{x^2} - 1}}\) là:
A. \(\dfrac{{3 - x}}{{(x - 1){{(x + 1)}^2}}}\)
B. \(\dfrac{{x - 3}}{{(x - 1){{(x + 1)}^2}}}\)
C. \(\dfrac{{x - 3}}{{{{(x + 1)}^2}}}\)
D. \(\dfrac{1}{{(x - 1){{(x + 1)}^2}}}\)
Khi phân tích đa thức \(R = 4{x^2} - 4xy + {y^2}\) thành nhân tử thì được:
A. \(R = {(x + 2y)^2}\)
B. \(R = {(x - 2y)^2}\)
C. \(R = {(2x + y)^2}\)
D. \(R = {(2x - y)^2}\)
Khi phân tích đa thức \(S = {x^6} - 8\) thành nhân tử thì được:
A. \(S = \left( {{x^2} + 2} \right)\left( {{x^4} - 2{x^2} + 4} \right)\)
B. \(S = \left( {{x^2} - 2} \right)\left( {{x^4} - 2{x^2} + 4} \right)\)
C. \(S = \left( {{x^2} - 2} \right)\left( {{x^4} + 2{x^2} + 4} \right)\)
D. \(S = \left( {x - 2} \right)\left( {{x^4} + 2{x^2} + 4} \right)\)
Tính giá trị của đa thức \(P = x{y^2}z - 2{x^2}y{z^2} + 3yz + 1\) khi \(x = 1\); \(y = - 1\); \(z = 2\)
Cho đa thức \(P = 3{x^2}y - 2x{y^2} - 4xy + 2\).
a) Tìm đa thức \(Q\) sao cho \(Q - P = - 2{x^3}y + 7{x^2}y + 3xy\)
b) Tìm đa thức \(M\) sao cho \(P + M = 3{x^2}{y^2} - 5{x^2}y + 8xy\)
Thực hiện các phép tính sau:
a) \({x^2}y\left( {5xy - 2{x^2}y - {y^2}} \right)\)
b) \(\left( {x - 2y} \right)\left( {2{x^2} + 4xy} \right)\)
a) \(18{x^4}{y^3}:12{\left( { - x} \right)^3}y\)
b) \({x^2}{y^2} - 2x{y^3}:\left( {\dfrac{1}{2}x{y^2}} \right)\)
Tính:
a) \(\left( {2x + 5} \right)\left( {2x - 5} \right) - \left( {2x + 3} \right)\left( {3x - 2} \right)\)
b) \({\left( {2x - 1} \right)^2} - 4\left( {x - 2} \right)\left( {x + 2} \right)\)
Phân tích các đa thức sau thành nhân tử:
a) \({\left( {x - 1} \right)^2} - 4\)
b) \(4{x^2} + 12x + 9\)
c) \({x^3} - 8{y^6}\)
d) \({x^5} - {x^3} - {x^2} + 1\)
e) \( - 4{x^3} + 4{x^2} + x - 1\)
f) \(8{x^3} + 12{x^2} + 6x + 1\)
Cho \(x + y = 3\) và \(xy = 2\). Tính \({x^3} + {y^3}\)
a) \(\dfrac{{2{x^2} - 1}}{{x - 2}} + \dfrac{{ - {x^2} - 3}}{{x - 2}}\)
b) \(\dfrac{x}{{x + y}} + \dfrac{y}{{x - y}}\)
c) \(\dfrac{1}{{x - 1}} - \dfrac{2}{{{x^2} - 1}}\)
d) \(\dfrac{{x + 2}}{{{x^2} + xy}} - \dfrac{{y - 2}}{{xy + {y^2}}}\)
e) \(\dfrac{1}{{2{x^2} - 3x}} - \dfrac{1}{{4{x^2} - 9}}\)
g) \(\dfrac{{2x}}{{9 - {x^2}}} + \dfrac{1}{{x - 3}} - \dfrac{1}{{x + 3}}\)
a) \(\dfrac{{8y}}{{3{x^2}}} \cdot \dfrac{{9{x^2}}}{{4{y^2}}}\)
b) \(\dfrac{{3x + {x^2}}}{{{x^2} + x + 1}} \cdot \dfrac{{3{x^3} - 3}}{{x + 3}}\)
c) \(\dfrac{{2{x^2} + 4}}{{x - 3}} \cdot \dfrac{{3x + 1}}{{x - 1}}:\dfrac{{{x^2} + 2}}{{6 - 2x}}\)
d) \(\dfrac{{2{x^2}}}{{3{y^3}}}:\left( { - \dfrac{{4{x^3}}}{{21{y^2}}}} \right)\)
e) \(\dfrac{{2x + 10}}{{{x^3} - 64}}:\dfrac{{{{\left( {x + 5} \right)}^2}}}{{2x - 8}}\)
g) \(\dfrac{1}{{x + y}}\left( {\dfrac{{x + y}}{{xy}} - x - y} \right) - \dfrac{1}{{{x^2}}}:\dfrac{y}{x}\)
Hôm qua thanh long được bán với giá \(a\) đồng mỗi ki-lô-gam. Hôm nay, người ta đã giảm giá \(1000\) đồng cho mỗi ki-lô-gam thanh long. Với cùng số tiền \(b\) đồng thì hôm nay mua được nhiều hơn bao nhiêu ki-lô-gam thanh long so với hôm qua?
Trên một dòng sông, một con thuyền đi xuôi dòng với tốc độ \(x + 3\) km/h và đi ngược dòng với tốc độ \(x - 3\) km/h (\(x > 3)\).
a) Xuất phát từ bến A, thuyền đi xuôi dòng trong 4 giờ, rồi đi ngược dòng trong 2 giờ. Tính quãng đường thuyền đã đi. Lúc này thuyền cách bến A bao xa?
b) Xuất phát từ bến A, thuyền đi xuôi dòng đến bến B cách bến A \(15\)km, nghỉ \(30\) phút, rồi quay về bến A. Sau bao lâu kể từ lúc xuất phát thì thuyền quay về đến bến A?
Bậc của đơn thức \(2{x^2}y{\left( {2{y^2}} \right)^2}\) là
A. 2
B. 5
C. 8
D. 7
Kết quả phép nhân \(\left( {4x - y} \right)\left( {y + 4x} \right)\) là
A. \(16{x^2} - {y^2}\)
B. \({y^2} - 16{x^2}\)
C. \(4{x^2} - {y^2}\)
D. \(16{x^2} - 8xy + {y^2}\)
Thực hiện phép nhân \(\left( {{a^2} - 2a + 4} \right)\left( {a + 2} \right)\), ta nhận được
A. \({a^3} - 8\)
B. \({a^3} + 8\)
C. \({\left( {a - 2} \right)^3}\)
D. \({\left( {a + 2} \right)^3}\)
Phân tích đa thức \(16{x^2} - {y^4}\) thành nhân tử, ta nhận được
A. \(\left( {4{x^2} - {y^2}} \right)\left( {4{x^2} + {y^2}} \right)\)
B. \({x^2}\left( {2 - y} \right)\left( {2 + y} \right)\left( {4x + {y^2}} \right)\)
C. \(\left( {{y^2} + 4x} \right)\left( {{y^2} - 4x} \right)\)
D. \(\left( {4x - {y^2}} \right)\left( {4x + {y^2}} \right)\)
Phân tích đa thức \({x^2}\left( {x + 1} \right) - x\left( {x + 1} \right)\) thành nhân tử, ta nhận được
A. x
B. \(x\left( {x + 1} \right)\)
C. \(x\left( {x - 1} \right)\left( {x + 1} \right)\)
D. \(x{\left( {x + 1} \right)^2}\)
Phân tích đa thức \(5x - 5y + ax - ay\) thành nhân tử, ta nhận được
A. \(\left( {5 + a} \right)\left( {x - y} \right)\)
B. \(\left( {5 - a} \right)\left( {x + y} \right)\)
C. \(\left( {5 + a} \right)\left( {x + y} \right)\)
D. \(5\left( {x - y + a} \right)\)
Rút gọn phân thức \(\frac{{a\left( {7 - b} \right)}}{{b\left( {{b^2} - 49} \right)}}\), ta nhận được
A. \(\frac{a}{{b\left( {b - 7} \right)}}\)
B. \(\frac{a}{{b\left( {b + 7} \right)}}\)
C. \( - \frac{a}{{b\left( {b + 7} \right)}}\)
D. \(\frac{a}{{b\left( {7 - b} \right)}}\)
Kết quả của phép trừ \(\frac{{{a^2} + 2ab}}{{a - 2b}} - \frac{{6ab - 4{b^2}}}{{a - 2b}}\) là
A. \(a + 2b\)
B. \(a - 2b\)
C. 2
D. \(\frac{{{a^2} - 4ab - 4{b^2}}}{{a - 2b}}\)
Kết quả của phép trừ \(\frac{{2b}}{{{a^2} + ab}} - \frac{{2a}}{{{b^2} + ab}}\) là
A. \(\frac{{2\left( {a + b} \right)}}{{ab}}\)
B. \(\frac{{2\left( {{a^2} + {b^2}} \right)}}{{ab}}\)
C. \(\frac{{2\left( {a - b} \right)}}{{ab}}\)
D. \(\frac{{2\left( {b - a} \right)}}{{ab}}\)
Kết quả của phép chia \(\frac{{{x^2} - {y^2}}}{{6xy}}:\frac{{x - y}}{{3y}}\) là
A. \(\frac{{x + y}}{{2x}}\)
B. \(\frac{{x + y}}{{18x}}\)
C. \(\frac{{2\left( {x + y} \right)}}{x}\)
D. \(\frac{{x + y}}{{18x{y^2}}}\)
Thu gọn các đa thức sau:
a) \(ab\left( {3a - 2b} \right) - ab\left( {3b - 2a} \right)\);
b) \(\left( {a - 4b} \right)\left( {a + 2b} \right) + a\left( {a + 2b} \right)\).
Thu gọn các biểu sau:
a) \(\left( {a - 4} \right)\left( {a + 4} \right) + {\left( {2a - 1} \right)^2}\);
b) \({\left( {3a - b} \right)^2} - \left( {a - 2b} \right)\left( {2b - a} \right)\).
Thực hiện các phép nhân sau:
a) \(\left( {x + y + 1} \right)\left( {x + y - 1} \right)\);
b) \(\left( {x + y - 4} \right)\left( {x - y + 4} \right)\).
a) \(3\left( {a - b} \right) + 2{\left( {a - b} \right)^2}\);
b) \({\left( {a + 2} \right)^2} - \left( {4 - {a^2}} \right)\);
c) \({a^2} - 2ab - 4a + 8b\);
d) \(9{a^2} - 4{b^2} + 4b - 1\);
e) \({a^2}{b^4} - 81{a^2}\);
g) \({a^6} - 1\).
a) \(\left( {a + 1 + \frac{{1 - 2{a^2}}}{{a - 1}}} \right):\left( {1 - \frac{1}{{1 - a}}} \right)\);
b) \(\left( {\frac{a}{{{b^2}}} - \frac{1}{a}} \right):\left( {\frac{1}{b} + \frac{1}{a}} \right)\);
c) \(\left( {a - \frac{{4ab}}{{a + b}} + b} \right).\left( {a + \frac{{4ab}}{{a - b}} - b} \right)\);
d) \(ab + \frac{{ab}}{{a + b}}\left( {\frac{{a + b}}{{a - b}} - a - b} \right)\).
Ở hình bên, độ dài các cạnh AB, BC và GH được cho theo a và b; hai cạnh CD và EF bằng nhau; ba cạnh AH, GF và ED bằng nhau.
a) Tìm độ dài các cạnh AH, GF, ED.
b) Tìm độ dài các cạnh CD, EF.
c) Tính chu vi của hình bên.
Lúc đầu người ta dự kiến thiết kế một chiếc hộp hình lập phương với độ dài mỗi cạnh là x (cm) \(\left( {x > 3} \right)\). Sau đó người ta điều chỉnh tăng chiều dài 3cm, giảm chiều rộng 3cm và giữ nguyên chiều cao. Sau khi điều chỉnh, thể tích của hộp giảm bao nhiêu, diện tích toàn phần của hộp giảm đi bao nhiêu so với dự kiến ban đầu? Áp dụng với \(x = 15cm\).