CHƯƠNG 1. BIỂU THỨC ĐẠI SỐ
CHƯƠNG 4. MỘT SỐ YẾU TỐ THỐNG KÊ
CHƯƠNG 5. HÀM SỐ VÀ ĐỒ THỊ
CHƯƠNG 7. ĐỊNH LÍ THALES

Trắc nghiệm Trường hợp hai cạnh góc vuông Toán 8 có đáp án

Trắc nghiệm Trường hợp hai cạnh góc vuông

18 câu hỏi
Trắc nghiệm
Câu 1 :

Cho tam giác ABC vuông tại A và tam giác DEF vuông tại D có: \(\frac{{AB}}{{DE}} = \frac{{AC}}{{DF}}\)

Chọn đáp án đúng

  • A.
    \(\Delta ABC = \Delta DEF\)
  • B.
    \(\Delta ABC \backsim \Delta DFE\)
  • C.
    \(\Delta ABC \backsim \Delta EDF\)
  • D.
    \(\Delta ABC \backsim \Delta DEF\)
Câu 2 :

Hai tam giác vuông đồng dạng với nhau khi:

  • A.
    Hai cạnh góc vuông của tam giác vuông này tỉ lệ với hai cạnh góc vuông của tam giác kia
  • B.
    Hai cạnh góc vuông của tam giác vuông này lần lượt bằng hai cạnh góc vuông của tam giác kia
  • C.
    Cả A, B đều đúng
  • D.
    Cả A, B đều sai
Câu 3 :

Cho hình vẽ sau:

Chọn đáp án đúng.

  • A.
    \(\Delta MNP \backsim \Delta DFE\)
  • B.
    \(\Delta MNP \backsim \Delta DEF\)
  • C.
    \(\Delta MNP = \Delta DFE\)
  • D.
    Cả A, B, C đều sai
Câu 4 :

Cho tam giác ABC vuông tại A có: \(AB = 3cm,AC = 5cm\) và tam giác MNP vuông tại M có \(MN = 12cm,MP = 20cm.\) Khi đó,

  • A.
    \(\Delta ABC = \Delta MNP\)
  • B.
    \(\Delta ABC \backsim \Delta MNP\)
  • C.
    \(\Delta BAC \backsim \Delta MNP\)
  • D.
    \(\Delta BCA \backsim \Delta MNP\)
Câu 5 :

Cho hình vẽ:

  • A.
    \(\widehat B = \widehat D\)
  • B.
    \(\widehat B = \frac{2}{3}\widehat D\)
  • C.
    \(\frac{2}{3}\widehat B = \widehat D\)
  • D.
    \(\widehat B = \frac{3}{4}\widehat D\)
Câu 6 :

Cho hình vẽ:

Chọn đáp án đúng

  • A.
    \(\widehat {ABC} + \widehat {EBD} = {80^0}\)
  • B.
    \(\widehat {ABC} + \widehat {EBD} = {85^0}\)
  • C.
    \(\widehat {ABC} + \widehat {EBD} = {95^0}\)
  • D.
    \(\widehat {ABC} + \widehat {EBD} = {90^0}\)
Câu 7 :

Cho hình vẽ:

Chọn đáp án đúng.

  • A.
    \(\widehat {BAH} = \widehat C\)
  • B.
    \(\widehat {BAH} = \frac{2}{3}\widehat C\)
  • C.
    \(\frac{2}{3}\widehat {BAH} = \widehat C\)
  • D.
    Cả A, B, C đều sai
Câu 8 :

Cho tam giác ABC vuông tại A và tam giác A’B’C’ vuông tại A’ có \(\frac{{AB}}{{A'B'}} = \frac{{AC}}{{A'C'}} = \frac{1}{2}.\) Gọi M, M’ lần lượt là trung điểm của BC và B’C’. Khi đó, tỉ số \(\frac{{AM}}{{A'M'}}\) bằng

  • A.
    \(\frac{1}{3}\)
  • B.
    \(\frac{1}{4}\)
  • C.
    \(\frac{1}{2}\)
  • D.
    \(2\)
Câu 9 :

Trên đoạn \(BC = 13cm,\) đặt đoạn \(BH = 4cm.\) Trên đường vuông góc với BC tại H, lấy điểm A sao cho \(HA = 6cm\)

Cho các khẳng định sau:

1. Số đo góc BAC bằng 80 độ

2. \(AB.AC = AH.BC\)

3. \(\widehat B > \widehat {CAH}\)

Có bao nhiêu khẳng định đúng?

  • A.
    0
  • B.
    1
  • C.
    3
  • D.
    2
Câu 10 :

Cho hình thang ABCD vuông tại A và D. Biết \(CD = 2AB = 2AD = 2a\) và \(BC = a\sqrt 2 .\) Gọi I là trung điểm của BC, H là chân đường vuông góc kẻ từ D xuống AC. Khi đó:

  • A.
    \(\widehat {HDI} = {45^0}\)
  • B.
    \(\widehat {HDI} = {40^0}\)
  • C.
    \(\widehat {HDI} = {50^0}\)
  • D.
    \(\widehat {HDI} = {55^0}\)
Câu 11 :

Cho O là trung điểm của đoạn AB. Trên cùng một nửa mặt phẳng có bờ là đường thẳng AB vẽ tia Ax, By cùng vuông góc với AB. Trên tia Ax lấy điểm C (khác A), qua O kẻ đường thẳng vuông góc với OC cắt tia By tại D. Kẻ OM vuông góc với CD tại M. Khi đó:

  • A.
    \(AC = \frac{4}{3}MC\)
  • B.
    \(AC = \frac{3}{2}MC\)
  • C.
    \(AC = \frac{2}{3}MC\)
  • D.
    \(AC = MC\)
Câu 12 :

Cho tam giác ABC vuông tại A có M là trung điểm của BC. Gọi I là hình chiếu của M trên AC. Chọn đáp án đúng.

  • A.
    \(\frac{{{S_{AIM}}}}{{{S_{ABC}}}} = \frac{1}{2}\)
  • B.
    \(\frac{{{S_{AIM}}}}{{{S_{ABC}}}} = \frac{1}{3}\)
  • C.
    \(\frac{{{S_{AIM}}}}{{{S_{ABC}}}} = \frac{1}{4}\)
  • D.
    \(\frac{{{S_{AIM}}}}{{{S_{ABC}}}} = \frac{2}{3}\)
Câu 13 :

Cho hình vẽ:

Chọn đáp án đúng

  • A.
    \(CE = \sqrt {66} \)
  • B.
    \(CE = \sqrt {65} \)
  • C.
    \(CE = 8\)
  • D.
    \(CE = 8,5\)
Câu 14 :

Cho tam giác ABC cân tại A và tam giác A’B’C’ cân tại A’ có chu vi bằng 30cm, các đường cao BH và B’H’. Biết rằng \(\frac{{BH}}{{B'H'}} = \frac{{HC}}{{H'C'}} = \frac{3}{2}\). Chu vi tam giác ABC là:

  • A.
    15cm
  • B.
    20cm
  • C.
    30cm
  • D.
    45cm
Câu 15 :

Cho tam giác ABC cân tại A và tam giác A’B’C’ cân tại A’, các đường cao BH và B’H’. Biết rằng \(\frac{{BH}}{{B'H'}} = \frac{{HC}}{{H'C'}}\). Biết rằng \(\widehat {A'B'C'} = \frac{1}{7}\widehat {BAC}.\) Chọn đáp án đúng

  • A.
    \(\widehat {BAC} = {140^0}\)
  • B.
    \(\widehat {BAC} = {100^0}\)
  • C.
    \(\widehat {BAC} = {120^0}\)
  • D.
    \(\widehat {BAC} = {110^0}\)
Câu 16 :

Cho hình thang vuông ABCD, \(\left( {\widehat A = \widehat D = {{90}^0}} \right)\) có \(AB = 4cm,CD = 9cm\) và \(BC = 13cm.\) Khoảng cách từ M đến BC bằng:

  • A.
    4cm
  • B.
    5cm
  • C.
    6cm
  • D.
    7cm
Câu 17 :

Cho tam giác ABC vuông tại A, \(AC = 3AB = 3a.\) Lấy các điểm D, E thuộc AC sao cho \(AD = DE = EC.\) Khi đó,

  • A.
    \(\widehat {AEB} + \widehat {ACB} = {40^0}\)
  • B.
    \(\widehat {AEB} + \widehat {ACB} = {45^0}\)
  • C.
    \(\widehat {AEB} + \widehat {ACB} = {50^0}\)
  • D.
    \(\widehat {AEB} + \widehat {ACB} = {55^0}\)
Câu 18 :

Cho hình thang vuông ABCD \(\left( {\hat A = \hat D = {{90}^0}} \right)\) có AB = 4cm, CD = 9cm, BC = 13cm. Gọi M là trung điểm của AD. Tính \(\widehat {BMC}\) .

  • A.
    \({60^0}\)
  • B.
    \({110^0}\)
  • C.
    \({80^0}\)
  • D.
    \({90^0}\)