Giải mục 2 trang 24, 25 SGK Toán 11 tập 1 - Cánh Diều


Với mỗi số thực x, tồn tại duy nhất điểm M trên đường tròn lượng giác sao cho (left( {OA,OM} right) = xleft( {rad} right)) (Hình 23). Hãy xác định (sin x).

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

HĐ3

Trả lời câu hỏi Hoạt động 3 trang 24 SGK Toán 11 Cánh diều

Với mỗi số thực x, tồn tại duy nhất điểm M trên đường tròn lượng giác sao cho \(\left( {OA,OM} \right) = x\left( {rad} \right)\) (Hình 22). Hãy xác định \(\sin x\).

Phương pháp giải:

Sử dụng công thức tính sin.

Lời giải chi tiết:

\(\sin x = \frac{{OK}}{{OM}}\).

HĐ4

Trả lời câu hỏi Hoạt động 4 trang 24 SGK Toán 11 Cánh diều

Cho hàm số \(y = \sin x\).

a) Tìm giá trị y tương ứng với giá trị của x trong bảng sau:

x

\( - \pi \)

\( - \frac{{5\pi }}{6}\)

\( - \frac{\pi }{2}\)

\( - \frac{\pi }{6}\)

0

\(\frac{\pi }{6}\)

\(\frac{\pi }{2}\)

\(\frac{{5\pi }}{6}\)

\(\pi \)

\(y = \sin x\)

?

?

?

?

?

?

?

?

?

b) Trong mặt phẳng Oxy, hãy biểu diễn các điểm \(\left( {x;y} \right)\) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm \(\left( {x;\sin x} \right)\) với \(x \in \left[ { - \pi ;\pi } \right]\) với nối lại ta được đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) (Hình 23).

 

c) Làm tương tự như trên đối với các đoạn \(\left[ { - 3\pi ; - \pi } \right]\), \(\left[ {\pi ;3\pi } \right]\),...ta có đồ thị hàm số \(y = \sin x\) trên R được biểu diễn ở Hình 24.

Phương pháp giải:

Sử dụng công thức tính giá trị của sin.

Lời giải chi tiết:

a)

x

\( - \pi \)

\( - \frac{{5\pi }}{6}\)

\( - \frac{\pi }{2}\)

\( - \frac{\pi }{6}\)

0

\(\frac{\pi }{6}\)

\(\frac{\pi }{2}\)

\(\frac{{5\pi }}{6}\)

\(\pi \)

\(y = \sin x\)

0

\( - \frac{1}{2}\)

-1

\( - \frac{1}{2}\)

0

\(\frac{1}{2}\)

1

\(\frac{1}{2}\)

0

b) Trong mặt phẳng Oxy, hãy biểu diễn các điểm \(\left( {x;y} \right)\) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm \(\left( {x;\sin x} \right)\) với \(x \in \left[ { - \pi ;\pi } \right]\) với nối lại ta được đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) (Hình 23).

c) Làm tương tự như trên đối với các đoạn \(\left[ { - 3\pi ; - \pi } \right]\), \(\left[ {\pi ;3\pi } \right]\),...ta có đồ thị hàm số \(y = \sin x\)trên R được biểu diễn ở Hình 24.

HĐ5

Trả lời câu hỏi Hoạt động 5 trang 25 SGK Toán 11 Cánh diều

Quan sát đồ thị hàm số \(y = \sin x\) ở Hình 24.

a) Nêu tập giá trị của hàm số \(y = \sin x\).

b) Gốc tọa độ có là tâm đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ của hàm số \(y = \sin x\).

c) Bằng cách dịch chuyển đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) song song với trục hoành sang phải theo đoạn có độ dài \(2\pi \), ta có nhận được đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ {\pi ;3\pi } \right]\) hay không? Hàm số \(y = \sin x\) có tuần hoàn hay không?

d) Tìm khoảng đồng biến, nghịch biến của hàm số \(y = \sin x\).

Phương pháp giải:

Sử dụng định nghĩa hàm số sin.

Lời giải chi tiết:

a) Tập giá trị của hàm số\(y = \sin x\)là \(\left[ { - 1;1} \right]\).

b) Đồ thị hàm số \(y = \sin x\)nhận O là tâm đối xứng.

Như vậy hàm số \(y = \sin x\) là hàm số lẻ.

c) Bằng cách dịch chuyển đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) song song với trục hoành sang phải theo đoạn có độ dài \(2\pi \), ta nhận được đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ {\pi ;3\pi } \right]\).

Như vậy, hàm số \(y = \sin x\) có tuần hoàn.

d) Hàm số \(y = \sin x\) đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\), nghịch biến trên mỗi khoảng \(\left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } \right)\) với \(k \in Z\).

LT-VD3

Trả lời câu hỏi Luyện tập - Vận dụng 3 trang 25 SGK Toán 11 Cánh diều

Hàm số \(y = \sin x\) đồng biến hay nghịch biến trên khoảng \(\left( { - \frac{{7\pi }}{2}; - \frac{{5\pi }}{2}} \right)\).

Phương pháp giải:

Sử dụng khoảng đồng biến, nghịch biến của hàm số \(y = \sin x\).

Hàm số \(y = \sin x\) đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\), nghịch biến trên mỗi khoảng \(\left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } \right)\) với \(k \in Z\)

Lời giải chi tiết:

Do \(\left( { - \frac{{7\pi }}{2}; - \frac{{5\pi }}{2}} \right) = \left( {\frac{\pi }{2} - 4\pi ;\frac{{3\pi }}{2} - 4\pi } \right)\) nên hàm số \(y = \sin x\) nghịch biến trên khoảng \(\left( { - \frac{{7\pi }}{2}; - \frac{{5\pi }}{2}} \right)\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí