Giải bài tập 2 trang 82 SGK Toán 9 tập 1 - Chân trời sáng tạo


Cho hình chữ nhật ABCD có AD = 18 cm và CD = 12 cm. Chứng minh rằng bốn điểm A, B, C, D cùng thuộc một đường tròn. Tính bán kính của đường tròn đó.

Đề bài

Cho hình chữ nhật ABCD có AD = 18 cm và CD = 12 cm. Chứng minh rằng bốn điểm A, B, C, D cùng thuộc một đường tròn. Tính bán kính của đường tròn đó.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

- Đọc kĩ dữ liệu đề bài để vẽ hình

- Áp dụng khoảng cách từ tâm đến đường tròn để chứng minh 4 điểm thuộc đường tròn

- Bán kính đường tròn bằng nửa đường chéo hình chữ nhật.

Lời giải chi tiết

Ta có ABCD là hình chữ nhật và gọi O là giao của hai đường chéo AC và BD.

Nên ta có OA = OB = OC = OD suy ra bốn điểm A, B, C, D cùng thuộc đường tròn tâm O, bán kính OA.

Áp dụng định lí Pythagore vào tam giác vuông ACD, ta có:

\(AC = \sqrt {AD^2 + CD^2} = \sqrt {18^2 + 12^2} = 6\sqrt {13}\)

Suy ra R = OA = \(\frac{{AC}}{2} = \frac{{6\sqrt {13}}}{2} = 3\sqrt {13}cm\).


Bình chọn:
3.4 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Chân trời sáng tạo - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí