Bài 3. Định lí Viète - Toán 9 Chân trời sáng tạo

Bình chọn:
4.6 trên 79 phiếu
Lý thuyết Định lí Viète

1. Định lí Viète Định lí Viète Nếu phương trình bậc hai \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) có hai nghiệm \({x_1},{x_2}\) thì tổng và tích của hai nghiệm đó là \(S = {x_1} + {x_2} = - \frac{b}{a};P = {x_1}{x_2} = \frac{c}{a}.\)

Xem chi tiết

Mục 1 trang 18, 19

Cho phương trình (a{x^2} + bx + c = 0(a ne 0)) có hai nghiệm ({x_1},{x_2}). Tính ({x_1} + {x_2}) và ({x_1}.{x_2}).

Xem chi tiết

Mục 2 trang 20

Cho hai số u và v có tổng u + v = 8 và tích uv = 15. a) Từ u + v = 8, biểu diễn u theo v rồi thay vào uv = 15, ta nhận được phương trình ẩn v nào? b) Nếu biểu diễn v theo u thì nhận được phương trình ẩn u nào?

Xem chi tiết

Bài 1 trang 21

Không giải phương trình, hãy tính tổng và tích các nghiệm (nếu có) của mỗi phương trình: a) (3{x^2} - 9x + 5 = 0) b) (25{x^2} - 20x + 4 = 0) c) (5{x^2} - 9x + 15 = 0) d) (5{x^2} - 2sqrt 3 x - 3 = 0)

Xem chi tiết

Bài 2 trang 21

Tính nhẩm nghiệm của các phương trình: a) (24{x^2} - 19x - 5 = 0) b) (2,5{x^2} + 7,2x + 4,7 = 0) c) (frac{3}{2}{x^2} + 5x + frac{7}{2} = 0) d) (2{x^2} - (2 + sqrt 3 )x + sqrt 3 = 0)

Xem chi tiết

Bài 3 trang 21

Tìm hai số u và v (nếu có) trong mỗi trường hợp sau: a) u + v = 29, uv = 154 b) u + v = -6, uv = -135 c) u + v = 5, uv = 24

Xem chi tiết

Bài 4 trang 21

Cho phương trình ({x^2} - 19x - 5 = 0). Gọi ({x_1},{x_2}) là hai nghiệm của phương trình. Không giải phương trình, hãy tính giá trị của các biểu thức: a) A = ({x_1}^2 + {x_2}^2) b) B = (frac{2}{{{x_1}}} + frac{2}{{{x_2}}}) c) C = (frac{3}{{{x_1} + 2}} + frac{3}{{{x_2} + 2}})

Xem chi tiết

Bài 5 trang 21

Một mảnh vườn hình chữ nhật chu vi là 116 m, diện tích 805 m2. Tìm chiều dài và chiều rộng của mảnh vườn đó?

Xem chi tiết

BÌNH LUẬN

Danh sách bình luận

Đang tải bình luận...