Giải bài tập 2 trang 21 SGK Toán 9 tập 2 - Chân trời sáng tạo>
Tính nhẩm nghiệm của các phương trình: a) (24{x^2} - 19x - 5 = 0) b) (2,5{x^2} + 7,2x + 4,7 = 0) c) (frac{3}{2}{x^2} + 5x + frac{7}{2} = 0) d) (2{x^2} - (2 + sqrt 3 )x + sqrt 3 = 0)
Đề bài
Tính nhẩm nghiệm của các phương trình:
a) \(24{x^2} - 19x - 5 = 0\)
b) \(2,5{x^2} + 7,2x + 4,7 = 0\)
c) \(\frac{3}{2}{x^2} + 5x + \frac{7}{2} = 0\)
d) \(2{x^2} - (2 + \sqrt 3 )x + \sqrt 3 = 0\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Dựa vào: Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\)có a + b + c = 0 thì phương trình có một nghiệm là \({x_1} = 1\) , nghiệm còn lại là \({x_2} = \frac{c}{a}\).
Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\)có a - b + c = 0 thì phương trình có một nghiệm là \({x_1} = - 1\) , nghiệm còn lại là \({x_2} = - \frac{c}{a}\).
Lời giải chi tiết
a) Phương trình \(24{x^2} - 19x - 5 = 0\) có a + b + c = 24 – 19 – 5 = 0.
Vậy phương trình có hai nghiệm là \({x_1} = 1\); \({x_2} = \frac{c}{a} = - \frac{5}{{24}}\)
b) Phương trình \(2,5{x^2} + 7,2x + 4,7 = 0\) có a - b + c = 2,5 – 7,2 + 4,7 = 0.
Vậy phương trình có hai nghiệm là \({x_1} = - 1\); \({x_2} = - \frac{c}{a} = - \frac{{4,7}}{{2,5}} = - \frac{{47}}{{25}}\).
c) Phương trình \(\frac{3}{2}{x^2} + 5x + \frac{7}{2} = 0\) có a - b + c = \(\frac{3}{2} - 5 + \frac{7}{2} = 0\).
Vậy phương trình có hai nghiệm là \({x_1} = - 1\); \({x_2} = - \frac{c}{a} = - \frac{7}{2}:\frac{3}{2} = - \frac{7}{3}\).
d) Phương trình \(2{x^2} - (2 + \sqrt 3 )x + \sqrt 3 = 0\) có a + b + c = \(2 - (2 + \sqrt 3 ) + \sqrt 3 = 0\).
Vậy phương trình có hai nghiệm là \({x_1} = 1\); \({x_2} = \frac{c}{a} = \frac{{\sqrt 3 }}{2}\).
- Giải bài tập 3 trang 21 SGK Toán 9 tập 2 - Chân trời sáng tạo
- Giải bài tập 4 trang 21 SGK Toán 9 tập 2 - Chân trời sáng tạo
- Giải bài tập 5 trang 21 SGK Toán 9 tập 2 - Chân trời sáng tạo
- Giải bài tập 1 trang 21 SGK Toán 9 tập 2 - Chân trời sáng tạo
- Giải mục 2 trang 20 SGK Toán 9 tập 2 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Chân trời sáng tạo - Xem ngay